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Abstract

Assessing software costs money and better assessment
costs exponentially more money. Given finite budgets, as-
sessment resources are typically skewed towards areas that
are believed to be mission critical. This leavesblind spots:
portions of the system that may contain defects which may
be missed. Therefore, in addition to rigorously assessing
mission critical areas, a parallel activity should sample the
blind spots. This paper assesses defect detectors based on
static code measures as a blind spot sampling method. In
contrast to previous results, we find that such defect detec-
tors yield results that are stable across many applications.
Further, these detectors are inexpensive to use and can be
tuned to the specifics of the current business situations.

1 Introduction

High assurance software requires extensive and expen-
sive assessment. There are many forms of software assess-
ment, ranging from manual inspections to automatic formal
methods. These assessment methods differ in their effec-
tiveness and the effort required to apply them. Typically, the
more effective methods are more expensive. Hence, project
managers often skew the assessment resources and apply
more effort where that extra effort might be most useful.

If most of the assessment effort explores project artifacts
A,B,C,D, then that leaves ablind spotin E,F,G,H,I,.... Blind
spots can compromise high assurance software. Leveson re-
marks that in modern complex systems, unsafe operations
often result from an unstudied interaction between compo-
nents [4]. Lutz and Mikulski [6] found one such interaction
in NASA deep-space satellites: mission critical anomalies
of flight softwarecan result from errors inground software
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that fails to correctly collect data from the flight systems.
This paper is about how to assess methods for sampling
blind spots.

An alternative to our proposal is to remove the blind
spots by better assessing the entire system. This is impracti-
cal. Blind spots are unavoidable and result from fundamen-
tal properties of software assessment and the economics of
software development. Software assessment budgets are fi-
nite while assessment effectiveness increases exponentially
with assessment effort. For example:

Black box probing: A linear increase in the confidenceC
that we have found all defects can takeexponentially
more effort. For example, for one-in-a-thousand de-
tects, movingC from 90% to 94% to 98% takes 2301,
2812, and 3910 black box probes (respectively)1.

Automatic formal methods: The infamous state space ex-
plosion problem imposes strict limits on how much a
system can be explored via automatic formal meth-
ods [9].

Other methods: Lowry et.al. [5] and Menzies and Cu-
kic [8] offer numerous other examples where assess-
ment effectiveness is exponential on effort.

Exponential costs quickly exhaust finite resources.
Hence, the blind spots can’t be removed, and must be man-
aged. Our proposal is to mix assessment methods. Standard
practice is to apply the best available assessment methods
on the sections of the program that the best available do-
main knowledge declares is most critical. We endorse this
approach. Clearly, the most critical sections require the best
known assessment methods. However, this focus on certain
sections can blind us to defects in other areas. Therefore,
standard practice should be augmented with alightweight

1A randomly selected input to a program will find a fault with prob-
ability x. After N random black-box tests, the chances of the inputs not
revealing any fault is(1− x)N . Hence, the chancesC of seeing the fault

is 1 − (1 − x)N which can be rearranged toN(C, x) =
log(1−C)
log(1−x)

. For

example,N(0.90, 10−3) = 2301 [15].
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# % with developed
project modules defects language at notes

CM1 496 9.7% C location 1 A NASA spacecraft instrument
JM1 10885 19% C location 2 Real-time predictive ground system: Uses simulations to generate predictions
KC1 2107 15.4% C++ location 3 Storage management for receiving and processing ground data
KC2 523 20% C++ location 3 Science data processing; another part of the same project as KC1; different per-

sonnel than KC1. Shared some third-party software libraries with KC1, but no
other software overlap.

PC1 1107 6.8 C location 4 Flight software for earth orbiting satellite
Total 15118

Figure 1. Data sets used in this study

sampling policyto explore the rest of the system. This sam-
pling policy will always be incomplete. Nevertheless, it is
the only option when resources do not permit a complete
assessment of the whole system.

For high assurance systems, the sampling policy must
be carefully audited. For safety-critical or mission-critical
software, it is best to use a sampling policy with known
properties. For example, if historical logs tell us the prob-
ability that sampling policiesS1, S2 require effortE1, E2,
have probability of detecting detectsPD1, PD2, and have
probability of false alarmsPF1, PF2, then software man-
agers can make an informed choice about how to mix and
matchS1 andS2.

Here, we present a case study that details the effec-
tiveness of creating sampling policies based on static code
measures. Defect detectors based on static code measures
have a bad reputation in the literature; e.g. by Shep-
perd & Ince [14] and Fenton&Pleeger [2]. For example,
with Nikora we have criticized needlessly complicated anal-
yses of such static measures [7]. Nevertheless, it is now our
contention that the reason previous studies found static code
detectors uninformative was due to small sample sizes and
a limited number of statistics from which to assess them.
With our larger sample size and greater number of statis-
tics, we can clearly and precisely demonstrate the advan-
tages and disadvantages of static code defect detectors.

For example, Figure 2 shows the kind of analysis enabled
by this paper. The solid lines were generated by repeating
the followingworst sampling procedure, thirty times.X%
of the modules (a.k.a. “C” functions of “C++” methods) in
each of the datasets of Figure 1 where selected at random
for X ∈ {0.2, 0.4, 0.6, 0.8}. Using historical logs of known
defects, it was possible to compute for eachX value, the
probability of detection and false alarm, using the methods
described in§3. Note that as more of the modules were se-
lected (i.e. increasingX), the probability of detecting errors
increased. However, using thisworstsampling policy, as the
detection probability increased, so did the the probability of
making a mistake (see the bottom plot of Figure 2).
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Figure 2. Comparing our results: whiskers
denote ±1σ; i.e. plus or minus one standard
deviation. The detectors that generate the best
curve as shown in Figure 14.

The dashed lines of Figure 2 show thebest sampling
policy found by this paper. After trying many different
machine learners (linear regression, the M5’ model tree
learner [12]; the J48 decision tree learner [13]; and our own
home-grown learner [10]) on several subsets of the available
data from Figure 1 (just the McCabe’s metrics; just the Hal-
stead metrics; just the LinesOf metrics), we found detectors
with very low false alarm rates. As shown in Figure 2, these
detectors came at the cost of slightly reduced probability of
detection. However, the very low false alarm rates of the
bestcurves enable effective blind spot sampling. If most of
the software assessment resources are being allocated to ar-
tifactsA,B,C, D, and the detectors ofbestcurves of Fig-
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Figure 3. The MDP data repository.

ure 2 are triggered by artifactsE,F,G,H, I, ..., then it is
clear that the assessment resources should be reallocated.

Thebestcurves in that figure were generated by learning
detectors from one data set, then applying it to all the other
data sets of Figure 1. The whiskers of Figure 2 show that the
standard deviation of thebestcurve is very small. That is,
our results are stable across multiple data sets. To the best of
our knowledge, this is the first time thatanydefect detectors
have been shown to be general to multiple projects.

Results like Figure 2 mean we offer a very detailed reply
to the question “how good is a blind spot sampling policy
based on static code detectors?”. Our detectors are useful
(low false alarm rates) and stable across multiple projects.
We would encourage proponents of other methods to be so
forthcoming.

The rest of this paper is structured is as follows. First, we
explain our data sources and show how other researchers
can access the same data. Next, we define the statistics
we will collect on our defect detectors. Then we will dis-
cuss some general properties of detectors, followed by our
methods and results. Finally, we will discuss our results,
and finish with a conclusion on what this study says about
blind spot sampling policies, and what direction future work
could possibly take.

2 Public Domain Defect Data

An important feature of this study is that it is repeat-
able and hence refutable. The data sets used in this study
are shown in Figure 1 and are freely available to other re-
searchers via the web interface to NASA’s Metrics Data
Program (MDP) athttp://mdp.ivv.nasa.gov (see
Figure 3).

The MDP is funded by NASA’s Software Independent
Verification & Validation (IV&V) facility at Fairmont, West

module found in defect tracking log?
no yes

signal
no;
i.e. v(g) < 10

A = 395
LOCA = 6816

B = 67
LOCB = 3182

detected? yes
i.e. v(g) ≥ 10

C = 19
LOCC = 1816

D = 39
LOCD = 7443

Acc = accuracy = 83%

PF = Prob.falseAlarm = 5%

PD = Prop.detected = 37%

prec = Precision = 67%

E = effort = 48%

Figure 4. A ROC sheet assessing the detec-
tor v(g) ≥ 10. Each cell {A,B,C,D} shows the
number of modules, and the lines of code
associated with those modules, that fall into
each cell of this ROC sheet.

Virginia. The IV&V Facility is responsible for verifying
that software developed or acquired to support NASA mis-
sions complies with the stated requirements. As the sole
entity with the responsibility for IV&V of all NASA mis-
sion software, the IV&V Facility is in a unique position to
create and maintain a master repository of software metrics
such as the MDP.

Once NASA projects agree to distribution, then the
sanitized data is made available to NASA, industry, and
academia to support software development and research by
other organizations. This is consistent with the IV&V Fa-
cilities research vision of “See more, learn more, tell more.”

3 Definitions

This paper reviews detectors based on theiraccuracy,
probability of detection, probability of false alarm, preci-
sion, andeffort. For an example of all statistics, see Fig-
ure 4. Consider a detector which, when presented with some
signal, either triggers or is silent. If some oracle knows
whether or not the signal is actually present, then Figure 4
shows four interesting situations. The detector may be silent
when the signal is absent (cell A) or present (cell B). Al-
ternatively, if the detector registers a signal, sometimes the
signal is actually absent (cell C) and sometimes it is present
(cell D).

Figure 4 lets us define theaccuracy, orAcc, of a detector
as the number of true negatives and true positives seen over
all events:

accuracy= Acc =
A + D

A + B + C + D

If the detector registers a signal, there are three cases of
interest. In one case, the detector has correctly recognized
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the signal. Thisprobability of detection, or “PD”, is the
ratio of detected signals, true positives, to all signals.PD
is also called therecall of a detector:

probability detection= PD = recall =
D

B + D

In another case, theprobability of a false alarm, or “PF ”,
is the ratio of detections when no signal was present to all
non-signals:

probability false alarm= PF =
C

A + C

Lastly, theprecision of a detector comments on its correct-
ness when it is triggered:

precision= prec =
D

C + D

PD,PF,Acc, Prec are also defined for numeric detec-
tors. Give a numerical prediction,N , then this can be con-
verted to a categorical detector by adding a threshold value
X. Once expressed in this form, Figure 4 can be completed
and PD,PF,Acc, Prec calculated for this detector. For
example, many of the case studies in this paper use the fol-
lowing threshold values:

X ∈ {0.33, 0.43, . . .3} ∧ if N


≥ X then trigger
< X then silent

(1)

Another statistic of interest is theeffort associated with
a detector. Our model is that these detectors are alerts in-
structing us to place more effort in some part of the soft-
ware. That is, if the detector is triggered, then some fur-
ther assessment procedure must be called. For the particular
static code defect detectors discussed in this paper, we will
assume that this effort is proportional to the lines of code in
the modules (this assumption is easily changed). Under that
assumption, theeffort for a detector is what percentage of
the lines of code in a system are selected by a detector.

effort = E =
LOCC + LOCD

LOCA + LOCB + LOCC + LOCD

4 General Detector Properties

This section describes some general properties of the de-
tectors that were generated during this research.

4.1 ROC Curves

Formally, a defectdetectorhunts for asignal that a soft-
ware module is defect prone. Signal detection theory [3]
offers receiver operator characteristic(ROC) curves as an
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Figure 5. Regions of a typical ROC curve.

analysis method for assessing different detectors. ROC
curves are widely used in various fields including assessing
different clinical computing systems [1] and assessing dif-
ferent machine learning methods [11]. The central intuition
of ROC curves is that different detectors can be assessed
via how often they correctly or incorrectly respond to the
presence or absence of a signal.

A typical ROC curve is shown in Figure 5. By definition,
the ROC curve must pass through the points PF=0,PD=0
and PF=1,PD=1 (a detector that never triggers never makes
false alarms; a detector that always triggers always gener-
ates false alarms). Between these two points, the curve can
take three interesting trajectories:

1. A straight line from (0,0) to (1,1) is of little interest
since it offersno information: i.e. the probability of a
detector firing is the same as it being silent.

2. The point (PF=0,PD=1) is the ideal position on a ROC
curve. This is where we recognize all errors and never
make mistakes. In practice, this point is never reached
but somepreferred curvesbend up towards this ideal
point.

3. Another trajectory is thenegative curvethat bends
away from the ideal point. Our experience has been
that these are detectors which, if their tests were
negated, would transpose into apreferred curve.

In the ideal case, a detector has a high probability of de-
tecting a genuine fault (PD) and a very low probability of
false alarm (PF ). This ideal case is very rare. In practice,
engineers must trade-off betweenPF andPD.

4.2 Risk vs Cost-adverse Projects

One advantage of ROC curves is that they let us char-
acterize two important and different types of software
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projects. Defect detectors that fall into thecost-adverse
region shown in Figure 5 have low probabilities of false
alarms. Such defect detectors are best when the budget
available for blind spot assessment is limited and the extra
effort associated with chasing false alarms is unacceptable.

On the other hand, detectors that fall into therisk-
adverse regionof Figure 5 have high probabilities of de-
tecting a signal. However, due to the usual relationship be-
tweenPD andPF , this high probability comes at the cost
of a high false alarm rate. Hence, detectors that fall into this
region are best for safety-critical systems where the cost of
chasing false alarms is out-weighed by the cost of system
failure.

5 Methods

Using the datasets of Figure 1, we have built hundreds
of detectors and computed theirPD,PF,Acc,Effort and
Prec. This section describes our detector generation meth-
ods. In the next section, we review the repeated patterns of
PD,PF,Acc,Effort andPrec seen in numerous NASA
projects.

All our detectors are learnt from examples of the form:

LOC, M1, M2, M3, H1, . . ., H8, HD1,

. . . , HD8, LO1, . . . , LO4 −→ #defects (2)

where LOC is lines of code per module (including blank
lines and comments);Mi are the McCabe metrics (cyclo-
matic complexity, essential complexity, design complexity);
Hi are the basic Halstead metrics (including unique and to-
tal number of operators and operands);HDi are the Hal-
stead metrics derived fromHi (including an estimate of re-
quired programming time); andLOi are the LinesOf Met-
rics (Lines Of Code, Comment, Code And Comment, and
Blank). Our MDP source offers#defects as a integer≥0.

5.1 Delphi Detectors

The traditional method of generating detectors is to use
the detectors recommended by McCabe, or to query expe-
rienced test engineers for their preferred detector(s). This
type of query results in detectors like these:

v(g) ≥ 10 (3)

iv(g) ≥ 4 (4)

iv(g) ≥ 4 ∨ v(g) ≥ 10 (5)

5.2 LSR Detectors

Another method to generate a detector is linear standard
regression orLSR. LSR is a standard statistical method
that fits a straight line to a set of points. The line offers a
set of predicted values. If the points are scattered, then a
single regression line can’t pass through each point. The
distance from these predicted values to the actual values is
a measure of the error associated with that line. Linear re-
gression packages search for a line that minimizes that error
and maximizes the correlation between predicted and actual
values. LSR generates equation such as Equation 6 below
(based on the derived Halstead metrics and#defects):

defects2 = 0.231 + (0.00344 ∗N) + (8.88e− 4 ∗ V )

−(0.185 ∗ L)− (0.0343 ∗D)− (0.00541 ∗ I)

+(1.68e− 5 ∗ E) + (0.711 ∗B) (6)

−(4.7e− 4 ∗ T )

5.3 Model Tree Detectors

A drawback with linear regression is that thesameline is
fitted through all points. That is, linear regression assumes
that all the data comes from a single simple linear distribu-
tion. Where this is not true, it may be better to divide the
space into different regions and then make a different de-
cision about each region. There are various techniques for
doing so, but the one we will use in this study ismodel trees.

A model tree is a decision tree with different linear re-
gression equations at each leaf. Model trees are used like
linear regression to generate defect detectors: if the predic-
tion ispi, then the detector is triggered whenpi ≥ X. Using
this method, the following detectors were generated by the
M5′ model tree learner [12, 16] from the KC2 data set, us-
ing nearly all available features (basic and derived Halstead,
McCabe’s, but notLOC):

0BBBBBBBBBBBB@

if N2 ≤ 49.5

then

8<:
if I <= 24.7

then 0.0375
else 0.284

else

8>>>><>>>>:
if N2 ≤ 142

then 1.06

else

8<:
0.663−
0.164 ∗ ev(g)+
0.0128 ∗ T

1CCCCCCCCCCCCA
≥ X (7)

5.4 Decision Tree Detectors

Model trees and LSR learn predictors for numeric
classes. Decision tree learners like J4.8 from the WEKA
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toolkit generate predictions for discrete classes [16]. Deci-
sion tree learnerssplit the whole example set into subsets
based on some attribute value test. The process then repeats
recursively on the subsets. Each splitter value becomes the
root of a sub-tree. Splitting stops when either a subset gets
so small that further splitting is superfluous, or a subset con-
tains examples with only one classification.

5.5 Rocky Detectors

J4.8 and model tree learning are state-of-the-art ma-
chine learning techniques. A much simpler technique is
our ROCKYlearner that exhaustively explores all singleton
rules of the form

feature ≥ threshold

Here, featureis every numeric feature present in a dataset
and threshold is found as follows: Every numeric fea-
ture is assumed to come from a Gaussian distribution.
Thresholds are then selected corresponding to equal areas
under that distribution. For example, in one of the datasets
we examine,v(g) had a mean ofµ = 4.9 and a standard
deviation ofσ = 11. If this Gaussian is converted to a
unit Gaussian (by subtracting the mean and dividing by the
standard deviation), then standard Z-tables could be used to
calculate av(g) threshold value of 7.65 for an area of 0.6.
ROCKYgenerates one detector

X ≥ X.threshold(area) (8)

for the range

X ∈ {LOC, Mi, Hi, HDi, LOi}
area ∈ {0.05, 0.1, 0.15, . . . 0.9, 0.95}

That is, the detector shown in equation 8 is really hundreds
of different detectors.

6 Results

To generate our detectors, we applied the above methods
to all the datasets in Figure 1; i.e. CM1, KC1, KC2, JM1,
PC1. For each dataset, we appliedLSR to LOC, to subsets
of the attributes containing just the McCabe metrics, just
the basic Halstead, or just the derived Halstead. Also, for
all datasets,M5′, ROCKY andJ4.8 were applied to all
available attributes (forJ4.8, the numeric#defects was
changed into a boolean for defects present/absent). For
theM5′ andLSR detectors that generate numeric predic-
tions, we collected statistics of 30 different variants with the
threshold set toX ∈ {0.3, 0.6, . . .3}.

For each dataset, a diagram like Figure 6 was generated.
Each x-axis of Figure 6 shows statistics from one detector.
In that figure, all the detectors are sorted byeffort.

The general shape of Figure 6 was seen in all our five
datasets:

1. PD rises witheffort and rarely rises above it.

2. HighPDs are associated with highPFs.

3. PD,PF, effort can change significantly while
accuracy remains essentially stable.

The repeated nature of Figure 6 in different datasets
prompted us to check the stability of detectors between
datasets. For each data set, detectors were generated us-
ing the methods described in the previous section. The de-
tectors learnt from datasetI were then applied to dataset
J(J 6= I). The differences∆ in the PF, PD,Acc, prec
and effort between the training setI and the test setJ
were collected. Figure 7 shows the mean and standard devi-
ation of all the∆ values generated from any training dataset
I applied to any other test datasetJ .

Referring to Figure 7, you can see that many of the∆
values for the various metrics are relatively stable. Some of
the detector generation methods are more stable than oth-
ers, but for almost every metric shownsomedetector gen-
eration method is stable. The sole exception to this is the
prec metric, which never demonstrates any type of stability
whatsoever.

7 Discussion

In this paper, we detailed several different methods for
generating defect detectors. These included LSR, Model
Trees, Decision Trees, DELPHI and Rocky. Below is a
short summary of the results of each of these methods in
detail, along with some explanatory text on why we either
recommend for or against these methods.

 0

 0.25

 0.5

 0.75

 1

%

30 detectors, sorted by effort

accuracy

PF
PD

effort

A B

Figure 6. Properties of detectors of the form
defectsi > Xi. Each x-axis point x describes
the PF, PD, effort, accuracy of one detector.
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Figure 7. Mean µ and standard deviation σ of changes in defect detector statistics. Dots denote mean
(µ) values. Whiskers extend from µ + σ to µ− σ.
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Figure 8. LSR on CM1 Data

7.1 LSR and Model Trees

For the majority of our data sets (3 out of 5), the curves
for LSR and Model Tree learners resemble those of Figure
8 . As seen in this graph, these methods tend to cut out
at higher effort values, which severly limits the type of de-
tectors which can be generated.Therefore, we recommend
against using LSR or Model Trees as a basis for locating
and choosing detectors.

7.2 Delphi

Our first positive results are for our Delphi predictors.
If you will recall from earlier, Delphi are merely expert(s)
opinions on whatshouldmake a good defect detector. The
results bear out the experts, as the Delphi curves all resem-

ble Figure 9, which provides a good variety of defect detec-
tor choices2. Therefore, we recommendfor using Delphi as
a basis for locating and choosing detectors.
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Figure 9. Delphi on KC2 Data

7.3 Decision Trees

For all data sets evaluated in this study, the J4.8 (Deci-
sion Tree) learner produced graphs similiar to Figure 10.
Decision Tree learners, because of their discrete nature,
generate only one point per data set. Thisseverelylimits
their applicability to other data sets, and limits management
options.Therefore, we recommendagainstusing J4.8 as a
basis for locating and choosing detectors.

2The Delphi curves always cut out at an effort of approximately 0.7,
but this is not normally a problem, as the extremley high effort detectors
are almost always associated with largePF values)
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Figure 10. J48 Decision Tree Learner on JM1
Data
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Figure 11. Rocky on Halstead metrics from
JM1 Data

7.4 Rocky on Halstead Metrics

Recall that the Rocky learner generates twenty detectors
for every attribute found in the dataset. Therefore, it is pos-
sible to break up the Rocky results into specific categories
based on the attributes, specifically Halstead, McCabe and
LinesOf. In the case of Rocky on the Halstead metrics, we
get good ranges and a fairly standard curve. However, refer-
ring to Figure 11, notice that the PF values are higher than
in other results, especially in the low effort ranges. Since
this effect is not repeated when Rocky is run on the other
metrics, this is obviously not the most successfull use of
the Rocky learner.Therefore, we recommendagainst us-
ing Rocky on Halstead metrics as a basis for locating and
choosing detectors.

7.5 Rocky on McCabe Metrics

Rocky on McCabe metrics produces a perfect example of
a standard set of curves, as shown in Figure 12. From these
curves, you can locate a detector for any business or project
situation with relative ease.Therefore, we recommendfor
using Rocky on McCabe metrics as a basis for locating and
choosing detectors.
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Figure 12. Rocky on McCabe metrics from
JM1 Data

7.6 Rocky on LinesOf Metrics

Rocky on LinesOf metrics is another example of a nearly
perfect set of curves, as demonstrated in Figure 13.There-
fore, we recommendfor using Rocky on LinesOf metrics as
a basis for locating and choosing detectors.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.2  0.4  0.6  0.8  1

Effort
PD
PF

ACC

Figure 13. Rocky on LinesOf metrics from
JM1 Data

8 External Validity

A unique conclusion of this paper is that, using our data
sets, we can demonstrate thestability of detector proper-
ties across different software projects. For example, we can
compare the probability of false alarmsPF of our detectors
when they are learnt from one software project and applied
to another. Figure 7 is a summary of the stability of vari-
ous learning methods over all our datasets. Using this type
of analysis, it is possible to compare different blind spot
assessment methods to one and another and conclusively
demonstrate a winner. To the best of our knowledge, this is
the first time that such a repeatable and refutable claim for
the stability of defect detectors has been made in the liter-
ature. The detectors forRocky on McCabewere shown in
the introduction in Figure 2.
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Method Detector Effort PD PF ACC PREC

ev(g) ≥ 14.508 0.200 0.101 0.002 0.811 0.917
Rocky On McCabe iv(g) ≥ 9.231 0.396 0.284 0.014 0.840 0.838

iv(g) ≥ 3.655 0.600 0.465 0.131 0.801 0.395
iv(g) ≥ 1.640 0.809 0.700 0.331 0.674 0.280

σ = 0.06 σ = 0.07 σ = 0.09 σ = 0.08 σ = 0.28

v(g) > 20 0.216 0.1 0.031 0.882 0.263
Delphi loc > 118 ORev(g) > 7 0.404 0.26 0.089 0.846 0.245

iv(g) > 4 0.600 0.465 0.131 0.807 0.395
v(g) ≥ 10 OR iv(g) ≥ 4 0.740 0.670 0.173 0.794 0.503

σ = 0.08 σ = 0.06 σ = 0.05 σ = 0.05 σ = 0.31

loc ≥ 133.575 0.202 0.073 0.015 0.809 0.542
Rocky On LinesOf loc ≥ 102.486 0.403 0.217 0.052 0.807 0.502

loc ≥ 50.691 0.595 0.459 0.077 0.826 0.610
loc ≥ 17.463 0.800 0.673 0.270 0.721 0.313

σ = 0.29 σ = 0.3 σ = 0.23 σ = 0.17 σ = 0.26

Figure 14. Means and standard deviation σ for various detectors recommeded by this text for
effort ≈ {0.2, 0.4, 0.6, 0.8}

9 Conclusion

Blind-spots present a significant hazard to any project,
and can lead to devastating and time-consuming errors in
later stages. It is our contention that by using the meth-
ods presented in this paper, a good defect detector can be
found for any software project. By using these detectors,
the chance of missing critical blind-spot errors can be dras-
tically reduced, leading to better software.

In this paper, we have discussed one specific type of
blind spot sampling policy; i.e. using defect detectors gen-
erated from static code measures. From the above discus-
sion, we can draw the following general lessons about blind
spot samplers:

• In the above analysis, our view of an “ideal detector”
depended on the statistic used to assess the detector;
e.g. PD, PF, effort, etc.Therefore, it is important to
assess detectors using multiple statistics.

• The same detector used on different data sets generates
different results. It insightful to study the mean and
standard deviation of these differences.For example,
Figure 14 shows the means and standard deviations of
some of the detectors seen in this study.

• An ideal sampling policy has a low variation when
applied to different sets; that is, given a list of those
variations,a good detector has a mean variation near
zero and a small standard deviation of those varia-
tions. The detectors in Figure 14 with aσ < 0.1 are
highly recommeded by this study.

• Once stability has been demonstrated, then it is pos-
sible to report general conclusions that should hold
across many data sets.Figure 14 shows some of the
stable conclusions generated by this study.

• Stability across multiple data sets cannot be assessed
without access to multiple data sets.Therefore it is
important to maintain a metrics repository to keep data
from multiple projects.

• Another assessment criteria explored above is the
method used to generate the detector; e.g. LSR, Rocky,
J4.8, etc. Some of these generators were shown to
be inferior to others. That is, when building a library
of detectors,different methods of generating detectors
should be explored.

• Generators of defect detectors work from measure-
ment types within a domain. In the above analysis, our
types were LinesOf code measures, Halstead metrics
and McCabe metrics. Some of these types turned out
to be inferior to other types. Therefore,defect detec-
tor generators should be assessed in combination with
measurement types.

As an example of the last two points, the above study
made some specific comemnts about the role of different
generator methods and measurement types for converting
static code metrics into defect detectors:

• Rocky On McCabe: This is the best overall method,
being both stable and providing a good range of de-
tectors. If you either already own one of the McCabe
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packages, or can afford to purchase one, then we rec-
ommend using it and the Rocky learner to tune defect
detectors to your projects.

• Delphi: Although Delphi detectors tend to cut out at
around an effort of 0.7, they are our second pick for
defect detector generation. However, it is important
to note that most of the Delphi detectors are based on
the McCabe package; this limits the Delphi applicabil-
ity to those companies which can afford the McCabe
toolset.

• Rocky on LinesOf: Finally, although it is slightly less
stable than the first two methods (see Figure 7), Rocky
On LinesOf offers a good range and is extremley cheap
and easy to collect. For any company or project which
either cannot afford the McCabe package or does not
wish to purchase it, then this is our recommended
method.

An important feature of the above analysis is that it has
compared results from different machine learners (linear re-
gression, the M5’ model tree learner [12]; the J48 decision
tree learner [13]; and our own home-grown learner [10])
on several subsets of the available data from Figure 1 (just
the McCabe’s metrics; just the Halstead metrics; just the
LinesOf metrics). Clearly, these are only (a) some of the
ways to generate detectors; and (b some of the metrics from
which we can generate detectors. We look forward to future
research into other types of generators from other types of
metrics. A primary feature of our analysis is that it provides
a “proving ground” for new methods; by repeating our sta-
bility analysis (as per figure 7), any new assessment meth-
ods can be compared and contrasted with previous ones in
a clear and consistent manner.
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