Validation Methods for Calibrating Software Effort Models

- - *
Tim Menzies
Computer Science Portland
State University

tim@menzies.us

Dan Port* Zhihao Chent
*Uni. of Hawaii, Computer
Science, Manoa;
tCenter for Software
Engineering,

Uni of Southern California

dport@hawaii.edu,

Jairus Hihn
Sherry Stukes
Jet Propulsion Laboratory,
Pasadena
jairus.m.hihn@jpl.nasa.gov,
sherry.stukes@jpl.nasa.gov

zhihaoch@cse.usc.edu

ABSTRACT

COCONUT calibrates effort estimation models using an ex-
haustive search over the space of calibration parameters in
a COCOMO I model. This technique is much simpler than
other effort estimation method yet yields PRED levels com-
parable to those other methods. Also, it does so with less
project data and fewer attributes (no scale factors). How-
ever, a comparison between COCONUT and other methods
is complicated by differences in the experimental methods
used for effort estimation. A review of those experimental
methods concludes that software effort estimation models
should be calibrated to local data using incremental hold-
out (not jack knife) studies, combined with randomization
and hypothesis testing, repeated a statistically significant
number of times.

Categories and Subject Descriptors

D.2.9 [Software Engineering]: Time Estimation; K.6.3
[Software Management]: Software Process

General Terms

Management, measurement, economics, experimentation

Keywords

COCOMO, calibration, incremental cross-validation

1. INTRODUCTION

Software effort models work better when calibrated with
local data [2,5,8,9,12,14,17,18]. However data collection
from industry is notoriously slow and most industrial sites
lack the resources to conduct extensive calibration studies.

*For a draft of this paper, see http://menzies.us/pdf/
O4coconut.pdf

Permission to make digital or hard copies of all or part of this work for

For example, few industrial sites that could repeat a CO-
COMO II-style calibration experiment [2]:

e An initial regression analysis was conducted on 83 projects
to generated the COCOMO I model [1];

e Further data collection found 78 more projects;

e A DELPHI panel convened where experts offered their
best judgment on factors controlling software costs;

e A Bayesian calibration technique integrated the DEL-
PHI results with data from the 83478 projects.

To shortcut the development time of an effort estima-
tion model, the COCOMO team added calibration param-
eters a and b in their model. They recommended “hav-
ing at least. .. 10 points for calibration both the multiplica-
tive constant a and the baseline exponent b”. [1, pl75].
Shepperd and Schofield make a similar conclusion, saying
that their effort estimation models stabilized after seeing 15
projects [14]. However, the evidence for these claims is not
conclusive. Shepperd and Schofield only repeated their sta-
bility studies three times and the variance in their results
is rather large. Also, when the COCOMO team tried two
experiments with calibration from 8 projects, the first one
succeeded and the second failed. They remark:

..the local calibration of (parameters) is more
beneficial when there is data on many projects
versus just 8 [2, p180].

This observation was the starting point for this paper. If
eight projects is too little data then when is enough data
enough? Is 10 or 15 enough? If “many projects” are re-
quired, how many is “many”?

Clearly, more experimentation is required to understand
the calibration of software effort estimation models. In defin-
ing a validation experiment for our own COCONUT cali-
bration tool, we reviewed prior experiments on effort esti-
mation. Comparing any two of those experiments is diffi-
cult since their experimental methods can be very different.
Hence, we defined a new procedure that combines the best
features of past research into calibrating effort estimation

personal or classroom use is granted without fee provided that copies aremodels. We commend this procedure to the effort estima-
not made or distributed for profit or commercial advantage and that copies tion community since it controls for certain effects that can
bear this notice and the full citation on the first page. To copy otherwise, to ¢omplicate calibration. Further, it can report the minimum
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ICSE’05,May 15-21, 2005, St. Louis, Missouri, USA.

Copyright 2005 ACM 1-58113-963-2/05/00055.00.

point at which enough project data is enough.
The rest of this paper reviews the need for local calibra-
tion, documents the effort models used in our work, discusses

rely | data| cplx| time| stor| virt| turn| acap| aexp| pcap| vexp| lexp| modp| tool| sced| ksloc actual
effort
(months)
h 1 h n n 1 1 n n n n h h n 1 2.2 | 84
h 1 h n n 1 1 n n n n h h n 1 3.5 | 10.8
h 1 h n n 1 1 n n n n h h n 1 5.5 | 18
n 1 h n n 1 1 h vh n h n n n 6 24
h 1 h n n 1 1 n n n n h h n 1 9.7 | 25.2
h 1 h n n 1 1 n n n n h h n 1 7.7 | 31.2
n 1 h n n 1 1 h vh n n 1 n n n 11.3 | 36
h 1 h n n 1 1 n n n n h h n 1 8.2 | 36
h n h n n n n n n n n n n n n 6.5 | 42
n n h n n n n n n n n n n n n 8 42
n 1 h n n 1 1 h vh h n h n n n 20 48
n n n n n n n n h h n n n n n 10 48
n 1 h n n 1 1 h vh h n h n n n 15 48
h 1 h n n 1 1 n n n n h h n 1 10.4 | 50
n n h n n n n n n n n n n n n 13 60
h 1 h n n 1 1 n n n n h h n 1 14 60
h 1 h n n 1 1 n n n n h h n 1 19.7 | 60
n 1 h n xh 1 1 h h n n h n n n 32.5 | 60
n 1 h n n 1 1 h h h n h n n n 31.5 | 60
n vh h vh vh 1 h vh h n 1 h vh vh 1 12.8 | 62
n vh h vh vh 1 h vh h n 1 h vh vh 1 15.4 | 70
n 1 h n n 1 1 h vh vh n h n n n 20 72
h 1 h xh xh 1 h h h h n h h h n 7.5 | 72
n vh h vh vh 1 h vh h n 1 h vh vh 1 16.3 | 82
h n n h n n n n h h n n n n n 15 90
KEY: n h h vh n n h h h h n h 1 1 h 11.4 | 98.8
xh= extra high vh n xh h h 1 1 n h n n n 1 h n 21 107
vh= very high n n h h n n n n n n n n n n n 16 114
h= high h 1 h n n 1 1 n n n n h h n 1 25.9 | 117.6
n= nominal h 1 h n n 1 1 n n n n h h n 1 24.6 | 117.6
1= low h 1 h n n 1 1 n n n n h h n 1 29.5 | 120
vl= very low n h h vh n n h h h h n h 1 1 h 19.3 | 155
n vh h vh vh 1 h vh h n 1 h vh vh 1 32.6 | 170
n vh h vh vh 1 h vh h n 1 h vh vh 1 35.5 | 192
h n h n n n n n h h n n n n n 38 210
n 1 h n n h 1 h h h 1 vl n n n 100 215
n vh h vh vh 1 h vh h n 1 h vh vh 1 48.5 | 239
n n h n h n n h h n n h h n h 47.5 | 252
n h vh n n 1 n h n vh 1 n h n 1 70 278
h 1 h n n 1 1 n n n n h h n 1 66.6 | 300
n 1 h n xh 1 1 h vh vh n h n n n 150 324
h 1 h n n 1 1 n n n n h h n 1 66.6 | 352.8
n 1 h n n 1 1 h vh vh n h n n n 100 360
n 1 h n n 1 1 h n n n vl n n n 100 360
h n h h h 1 h n h n n n 1 vh n 50 370
h h n n n 1 1 n h h n h n n n 79 400
n n n n n 1 n h vh vh 1 h h n n 190 420
n n h n n n n n n h n h h h n 90 450
h 1 h n n 1 1 n n n n h h n 1 115.8 | 480
n h h vh n n h h h h n h 1 1 h 78 571.4
h n vh h h 1 h h n n h h 1 vh h 101 750
n vh h vh vh 1 h vh h n 1 h vh vh 1 161.1 | 815
h h 1 n n n h h h n n n h n n 284.7 | 973
vh h h vh vh n n vh vh vh n h h h 1 227 1181
n h h vh h 1 h h n h 1 h h n 1 177.9 | 1248
n h 1 n n h n h h n n n h h n 282.1 1368
h n h h h 1 h n h n n n 1 vh n 219 2120
1 n n n n 1 1 h h vh n h 1 1 h 423 2300
h 1 h n n 1 1 n n h n n h vl n 302 2400
h n h h h 1 h n h n n n 1 vh n 370 3240

Figure 1: NASA effort data used in this study. Available on-line at the PROMISE repository of public domain
software engineering data sets: http://promise.site.uottawa.ca/SERepository/datasets/cocomonasa.arff.

prior experiments in effort estimation, and presents results
from our preferred method. Based on those results, we spec-
ulate that the COCONUT tool is an effective and simpler
alternative to traditional effort estimation tools. This paper
is offered as a baseline result with the hope that other re-
searchers will try to reproduce and out-perform our results.

Before beginning, we digress for a comment on the prob-
lems associated with collecting industrial software engineer-
ing data. In the future, we hope to apply our methods to
data from many sources. However, for now, the methods of
this paper have only been applied to the historical NASA
data of Figure 1. There is a good reason for this. Collect-
ing such new data is very difficulty. Software projects are
notoriously difficult to control’. Corporations are therefore
reluctant to expose their own software development record
to public scrutiny.

Given this data shortage, it is important that the avail-
able data is put to best use. Therefore, much of this paper
is devoted to a methodological discussion on how to best
calibrate a cost model.

2. THECASEFORLOCAL CALIBRATIONS

Before discussing how to perform local calibration, this
section discusses why such calibrations are useful.

The case against calibration is statistical: if a large database
of examples exists, then the distributions in that large database

should include the particulars of some current project. Hence,
it would seem advantageous to not calibrate in order to make
full use of the knowledge in the large database of examples.

The problem with this argument is that it assumes a
database large enough to capture the underlying distribu-
tions of the software development process. Figure 2 suggests
that we do not have such a “large enough” database.

That figure shows the percentage of times an attribute was
selected by a N=4 hill climbing search. In hill climbing, if
adding a attribute to a set of currently selected attributes
does not improve the score (in this, effort estimation accu-
racy), then that set is marked “stale”. If that set remains
“stale” even after N more additions, then the last N + 1
added attributes are rejected and the hill climber searches
elsewhere. Otherwise, the attributes in the non-stale set are
selected as being influential on the score.

This hill-climbing search was conducted on COCOMO II
data divided into pre- and post-1990 projects. Ten experi-
ments were performed with each of the two divisions. Each
experiment performed hill climbing on a randomly selected
90% of the division data. Figure 2 only shows the most of-
ten influential attributes; i.e. those that were selected in five
or more of the experiments in either the pre- or post-1990
sample.

Some of those attributes were selected with similar fre-
quencies in both samples (pcon, site, size). However, the
remaining influential attributes had very different influence
on effort in the pre- and post-1990 samples. Some of the
changes we can’t explain such as the dramatic drop in the
importance of pcap (programmer capability). Other chances
correspond to general trends in the computer industry. For
example, the team cost driver (i.e. team cohesion) has be-
come more significant. This is not unexpected, given the

'Recall the 1995 report of the Standish group that described
a $250 billion dollar American software industry where 31%
of projects were canceled and 53% of projects incurred costs
exceeding 189% of the original estimate [16].

;_“i ' "89 pr'oj ects, post-i990 -

5 72 projects, pre-1990 —=—

& 100 - ‘ ‘ ‘ ‘ ‘ -

3

k] 75+ B

N

X 50 | -

£

g 25 B
O - -

3 T S S S S

team apex pcap pcon site size stor
Influencial attributes, sorted by pre-1990 impact
Figure 2: Influence of various COCOMO II

attributes within two sub-samples of the 2004
database found by a hill climbing (N=4) search.

boom in knowledge management, experience management
and organization learning since 1990. Another interesting
change is that the stor cost driver (i.e. main memory storage
constraint) has become dramatically less important. After
all the development in hardware and software for the last
two decades, main storage is more readily available.

Regardless of the reason for the change in the influence
of the attributes, the general lesson of Figure 2 is that data
collected in one context (e.g. pre-1990) may not be com-
pletely relevant to some other context. An often repeated
result in effort estimation is that stratification of the avail-
able data into similar projects, can improve the effective-
ness of estimation. Similar projects have less variation and
so can be easier to calibrate. A commonly used measure of
predictive accuracy is the “PRED” value defined is §4. Chu-
lani et.al. [4] report that stratifying data can improved their
“PRED” values anywhere between 5% to 12%. Shepperd
and Schofield report even more dramatic improvements in
“PRED” from 4% to 44% [14].

3. EFFORT ESTIMATION MODELS

Having made the case that local calibration is useful, this
section describes the BASE and COCOMO 1 effort estima-
tion model used in our calibration experiments.

There are many effort estimation models® and the one
we used here was chosen based on the available publishable
data. Our intent was to define a repeatable effort estimation
experiment so that others may repeat to refute or improve
our results. The COCOMO 1II data is not publishable since
it was collected on condition of confidentiality with the com-
panies supplying the data.

Figure 1 showed the data used in this study. That data
comes from 60 NASA projects from different centers for
projects from the 1980s and 1990s. Since it is from NASA,
it is stratified to just aerospace applications. The data is
in COCOMO T format so it lacks the scale factors (defined
below) used in COCOMO II.

COCOMO measures effort in calendar months of 152 hours
(and includes development and management hours). CO-
COMO assumes that the effort grows more than linearly
on software size. In our experiments, we will model this
assumption two ways. The BASE model assumes:

2See the excellent review in [6, Chapter 2].

increase acap: analysts capability

these to pcap: programmers capability
decrease aexp: application experience
effort modp: modern programing practices

tool: use of software tools
vexp: virtual machine experience
lexp: language experience

[sced: schedule constraint

decrease stor: main memory constraint
these to data: data base size

decrease time: time constraint for cpu
effort turn: turnaround time

virt: machine volatility
cplx: process complexity
rely: required software reliability

Figure 3: COCOMO I effort multipliers.

months = ax KSLOC". (1)

where a and b are domain-specific parameters and KSLOC
is estimated directly or computed from function points.

In our experiments, this BASE equation is compared to a
more sophisticated model:

months = a * (KSLOC’b) * (H EMJ-> (2)

Equation 2 is Boehm’s COCOMO I model [1]. EMj is one
of a set of effort multipliers shown in Figure 3.

In COCOMO 1, the exponent on KSLOC was a single
value ranging from 1.05 to 1.2. In COCOMO II, the expo-
nent b of Equation 2 was divided into a constant, plus the
sum of five scale factors which modeled issues such as “have
we built this kind of system before?”. The COCOMO II ef-
fort multipliers are similar but COCOMO II dropped one of
the Figure 3 parameters; renamed some others; and added
a few more (for “required level of reuse”, “multiple-site de-
velopment”, and “schedule pressure”).

The numeric values of the effort multipliers are shown in
Figure 4. These were learnt by Boehm after a regression
analysis of the projects in the COCOMO I data set [1]. The
multipliers fall into three groups: those that are positively
correlated to more effort; those that are negatively correlated
to more effort; and a third group containing just schedule
information. In COCOMO 1, sced has a U-shaped correla-
tion to effort; i.e. giving programmers either too much or
too little time to develop a system can be detrimental.

The last column of Figure 4 is %::‘Z: and shows the over-
all effect of a single effort multiplier. For example, moving
acap (analyst experience) from very low to very high will
most decrease effort while moving rely (required reliability)
from very low to very high will most increase effort.

There is more to COCOMO that the above description.
The COCOMO 11 text [2] is over 500 pages long and offers all
the details needed to implement data capture and analysis
of COCOMO in an industrial context.

4. PERFORMANCE MEASURES

Our preferred experiment is a combination of the best
techniques seen in the effort estimation calibration experi-
ments of Figure 5. Those experiments all take the form:

{Repeats, Train, Test}

very very | extra | productivity
low | low | nominal| high| high| high range
acap 1.46 | 1.19 1.00| 0.86| 0.71 2.06
pcap 1.42.| 1.17 1.00| 0.86| 0.70 1.67
aexp 1.29| 1.13 1.00| 0.91| 0.82 1.57
modp | 1.24.| 1.10 1.00| 0.91| 0.82 1.34
tool 1.24| 1.10 1.00| 0.91| 0.83 1.49
vexp 1.21| 1.10 1.00| 0.90 1.34
lexp 1.14| 1.07 1.00| 0.95 1.20
sced 1.23| 1.08 1.00| 1.04| 1.10
stor 1.00| 1.06| 1.21 1.56 -1.21
data 0.94 1.00| 1.08| 1.16 -1.23
time 1.00| 1.11| 1.30 1.66 -1.30
turn 0.87 1.00| 1.07| 1.15 -1.32
virt 0.87 1.00| 1.15| 1.30 -1.49
cplx 0.70| 0.85 1.00| 1.15| 1.30 1.65 -1.86
rely 0.75| 0.88 1.00| 1.15| 1.40 -1.87

Figure 4: COCOMO I effort multiplier values.

That is, Repeats times the available data is divided into
a Train set and a Test set. Some tool is applied to the
training set to learn a model or calibrate parameters within
a model. The model or parameters are then frozen and
applied to the Test set.

When the Train and Test set do not intersect this is
called a holdout study. Holdout studies check the utility of
the calibrated parameters using data not used during cali-
bration. If the calibrations are tested on the training set,
this is not a holdout study. Two non-holdout studies are
shown in Figure 5: see the |Test| = 0 entries. An extreme
form of holdout studies are the jack knife studies used in
rows {d...l} of Figure 5) where every example is removed
one at a time, training occurs on the remaining data, then
testing is conducted on the single holdout example.

The results of Figure 5 are expressed in terms of MMRE
and PRED(N) (for notes on other performance measures,
see [19, chapter 5]). MMRE and PRED are computed from
the relative error, or RE, which is the relative size of the
difference between the actual and estimated value:

RE; — estimate; — actual;

actual;
Given a data set of of size D, a T'raining set of size (X =
|Train|) < D, and a test set of size T = D — |Train|,
then the mean magnitude of the relative error, or MMRE,
is the percentage of the absolute values of the relative errors,
averaged over the T items in the T'est set; i.e.

MRE; = abs(RE;)
MMRE; = 2% ST MRE;
PRED(N) reports the average percentage of estimates that
were within N% of the actual values:

T
100 l1if MRE; < %
PRED(N) = T { 0 otherwise 100

For example, e.g. PRED(30)=50% means that half the es-
timates are within 30% of the actual. Shepperd and Schofield
comment that:

MMRE is fairly conservative with a bias against
overestimates while Pred(25) will identify those
prediction systems that are generally accurate
but occasionally wildly inaccurate [14, p736].

The rows labeled {d,:} in Figure 5 illustrate how stratifi-
cation can improve effort estimation. In those experiments,

id Holdout? | Repeats | |Train| | |Test| | Best Results Notes Reference
a v 3 105 10 | PRED(25)=75% | Wittig&Finnie studied neural networks predicting software ef- [20]
fort that yielded an average PRED(25) of 75%
b n MMRE=70% Back propagation neural nets [15]
c n 1 8 0 | PRED(20)=100%| In the COCOMO II experiment discussed in the introduction, a [2]
PRED(20)=75% model was calibrated to a PRED(20)=100%. | p175-
181
do y 28 27 1 | PRED(25)=21% | The Mermaid data: unstratified, estimation by analogy 14
d; v ? ? 1 | PRED(25)=39% | The Mermaid E data: stratified, estimation by analogy 14
da v ? ? 1 | PRED(25)=25% | The Mermaid N data: stratified, estimation by analogy 14
e y 21 20 1 | PRED(25)=23% | The Real-timel data: unstratified, estimation by analogy 14
f y 24 23 1 | PRED(25)=33% | The Albrecht data: unstratified, estimation by analogy 14
g y 38 37 1 | PRED(25)=39% | The Finnish data: unstratified, estimation by analogy 14
h v 15 14 1 | PRED(25)=40% | The Kemerer data: unstratified, estimation by analogy 14
ig y 77 76 1 | PRED(25)=42% | The Desharnais data: unstratified, estimation by regression 14
i1 y ? ? 1 | PRED(25)=47% | The Desharnais 1 data: stratified, estimation by analogy 14
ig y ? ? 1 | PRED(25)=48% | The Desharnais 2 data: stratified, estimation by regression 14
i3 y ? ? 1 | PRED(25)=70% | The Desharnais 3 data: stratified, estimation by analogy 14
j y 21 20 1 | PRED(25)=43% | The Atkinson data: unstratified, estimation by regression 14
k y 18 17 1 | PRED(25)=44% | The Telecom 1 data: unstratified, estimation by analogy 14
1 y 33 32 1 | PRED(25)=51% | The Telecom 2 data: unstratified, estimation by analogy 14
m n 1 83 0 | PRED(30)=64% | Boehm improved the COCOMO-II 1997 PRED(30) results 2]
from 52% to 64%, before and after stratification.
n y 15 121 40 | PRED(30)=69% | Chulani (of the COCOMO II team) conducted experiments in 2]
calibrates the COCOMO II 2000 software effort model using a
Delphi panel and a Bayesian calibration method.
o y 3 67 10 | MMRE=21% Mair et.al. compared the performance of adaptive neural nets [13]
(ANN), case-based reasoning, rule induction, and linear regres-
sion. In that study, the ANN produced the best MMRE’s of
21,53,66% in each of the three runs.
p y 10 99 10 | PRED(25)=83.3% Boetticher reported a 10 * 99/10 study that yielded software [3]
effort estimates with an average PRED(25)/MMRE across the
ten repeats of of 83.3% /14.7% (respectively).
56 4 | PRED(30)=70%
52 8 | PRED(30)=70% This
q y 30 48 12 | PRED(30)=70% study.
44 16 | PRED(30)=70%

Figure 5: A sample of effort estimation experiments in the literature. Missing numbers, marked with “?”,
come from a lack of information in the source document.

the unstratified data of {do, i} was divided into related sub-
sets to form {d1,d2} and {i1,42,i3}. The do/d1 comparison
shows the least improvement: 21% to 25% while the {io/is}
comparison show the greatest improvement: 42% to 70%.

An interesting variant on the standard calibration exper-
iment is the incremental holdout experiment used by (e.g.)
Shepperd and Schofield which explores “the dynamic be-
havior of effort prediction by simulating the growth of a
dataset over time” [14, p741]. That is, as the study pro-
gresses, more and more of the data is moved from test to
training in units of size 4. That is, holdout experiments
convert a {Repeats, Train, Test} experiment into

{Repeats, Train, Test, 0}

For example, if at every step in a holdout study, one exam-
ple is moved from Test to Trainr then such a

{Repeats, |Train| = 1, |Test| = 100,56 = 1}

study could look like this:

while(Repeats--)

randomizeOrder

train on item 1 test on items 2..100
train on items 1,2, test on items 3..100
train on items 1,2,3 test on items 4..100
train on items 1..97 test on item 98,99,100
train on items 1..98 test on item 99,100
train on items 1..99 test on item 100

5. EXPERIMENTAL METHOD

Each of the Figure 5 studies has merit, but their results
are hard to compare since they mostly use different data
sets and different experiment methods. To remedy that sit-
uation, we describe below a single experimental design that
combines all the best features of the above work. Hopefully,
this design will become a template for future reports.

Like many of the researchers listed in Figure 5, we en-
dorse holdout studies. The alternative to holdout studies is
to assess the learned theory on the data used to generate
it. Such non-holdout studies are useful for finding patterns
in historical data. However, if the goal is to generate mod-
els that have some useful future validity, then the learned
theory should be tested on data not used to build it. Fail-
ing to do so can result in a excessive over-estimate of the
learned model- for example, Srinivasan and Fisher report
an 0.82 correlation between the predictions generated by
their learned decision tree and the actual software develop-
ment effort seen in their training set [15]. However, when
that data was applied to data from another project, that
correlation fell to under 0.25.

We endorse holdout studies, but not jack knife studies.
Witten and Frank [19] argue against jack knifing, offering
examples where jack knifing can lead to widely inaccurate
results. Witten and Frank’s preferred alternate procedure,
which is somewhat of a standard in the data mining litera-
ture, is to use holdout sets of around 10% of the available
data (when the data set is large) or repeated experiments

with a 33% holdout (when the data set is small). In partial
support of Witten and Frank’s view, note that the Shep-
perd and Schofield experiments (rows i...l) of Figure 5 and
generally lower than, say, the COCOMO experiments (rows
{e,m,n}), or Boetticher’s neural net study (row p).

With the exception of Shepperd and Schofield, when re-
searchers conduct holdout studies, they usually use large
training sets and much smaller test sets; e.g. see the train-
ing sets of size 67,99,105,140 and test sets of size 10,10,10,40
used by Mair, Boetticher, Wittig, Chulani in rows {0, p, a,n}
respectively. Hence, we recommend the use of holdout stud-
ies since these can report how well a system behaves as the
amount of available data is reduced.

Holdout studies should be repeated more often than (e.g.)
the three runs reported by Shepperd and Schofield. Af-
ter three repeats, those researchers reported convergence in
their estimator at between 10 to 15 projects. But their re-
sults (Figures 1 and 2, [14, p741]) show a huge variance. We
recommend repeating holdout studies 30 times in order to
gain statistics on the variance.

When repeating holdout experiments, it is good practice
to randomize the order of the input examples (e.g. as done
by Shepperd and Schofield). Many algorithms have an order
effect such that their performance changes dramatically if
the inputs are re-ordered (the classic example is the “Quick-
Sort” algorithm that performs badly on input that is already
sorted in descending order). Kermer reported order effects
in his analysis data from 15 projects: if training was re-
stricted to 9 particular projects, the learning was far more
successful [11]. Randomization avoids such order effects.

Some researchers try their calibration method on data sets
used by other researchers (e.g. [13-15]), but most don’t. To
(partially) reduce this problem, we follow the lead of Srini-
vasan and Fisher and place all our data sets on the web® We
encourage other researchers to do the same.

Experimental results should be reported using more than
just mean PRED(N). Chulani et.al. report min,mean,max
values seen in their holdout studies while Shepperd and
Schofield offer performance graphs that let the reader see
the variance in their technique. We recommend going fur-
ther and reporting the results results using means and stan-
dard deviations seen over the 30 repeats.

It is good practice to benchmark elaborate or resource in-
tensive techniques against simpler alternatives. In his text
on empirical Al [7], Cohen argues that such comparisons
are important since, sometimes, sophistication is superflu-
ous since the simpler method can achieve similar results to
the more complex method (e.g. as seen in Holte’s famous
study Very Simple Classification Rules Perform Well on
Most Commonly Used Datasets [10]). We will compare our
COCONUT method with a straw man alternative (which
uses the BASE equation of Equation 1). When comparing
two techniques, it is also good practice to use t-tests to com-
pare means and deviations of two alternative techniques.

Lastly, we report results in terms of PRED(N), not MMRE.

This is a pragmatic decision- we have found PRED(N) eas-
ier to explain to business users than MMRE. Also, there are
more PRED(N) reports in the literature than MMRE. This
is perhaps due to the influence of the COCOMO researchers
who reported their 1999 landmark study using PRED(N) [4].

3See http://www.vuse.vanderbilt.edu/~dfisher/
tech-reports/raw-TSE-95. and http://promise.site.
uottawa.ca/SERepository/datasets-page.html.

function learn() { # from ’D’ examples

1 Repeats=30

2. while(Repeats--) {

3. randomizeOrder0fProjects()
4 for (x=2;x<=D;x += 3) {

Train on ’x’ examples

5 for(a=2; a <=5; a += 0.3) {

6 for(b=1; b<=1.3; b += 0.05) {
7. sum=test(1,x,a,b,Pred)

8. if (sum < least) { least=sum

9 BestA=a

10. BestB=b }}}

Test on ’D-x’ examples
11. failures = test(x+1,N,BestA,BestB,Pred)
12. print Repeats " " i " " failures}}}

function test(start,stop,a,b,est,act,i,mmre) {
13. failures=0
14. for(i=start;i<=stop;i++) {

15. est = axsize(i) bxem(i)

16. act = actual(i)

17. mmre = abs((act-est)/act)*100
18. if (mmre > pred) failures++}
19. return failures}

function em(i, j,out) {
20. if (Base) { return 1 }
21. else { #return product of effort multipliers }

Figure 6: The COCONUT tool: pseudo-code.

6. COCONUT

This section describes COCONUT, a calibration tool that
implements an incremental holdout study for the BASE
model of Equation 1 and the COCOMO I model of Equa-
tion 1. COCONUT is short for “COCOMO, Not Unless
Tuned”.

COCONUT was inspired by Cohen’s recommendation,
discussed above, that complex methods should be compared
to very simple ones. Figure 5 shows studies where effort es-
timation has been attempted using analogy, rule induction,
neural nets, Bayesian tuning, regression, etc etc. To the best
of our knowledge, no one has previously attempting calibra-
tion using just an exhaustive search through the range of
possible a and b parameters. Such a search is tractable:
just the two for-loops of lines 5/6 of the learn function of
Figure 6.

Given D projects, the test function of the COCONUT
tool shown in Figure 6 inputs a and b parameters and com-
putes an effort estimate (see line 15) for the projects num-
bered start to stop (start < stop < D). The learn function
(at lines 5 to 10) calls test for projects 1 to i (i<D) to
find the a and b parameters that minimizes the test failure
count. These best a and b values are then tested on the
projects numbered i + 1 to D (see lines 11,12).

COCONUT is a very simple system and could be im-
proved. For example, Equation 1 and Equation 2 shows
that a and b effect ef fort monotonically and continuously.
Hence, the exhaustive search on lines 5 and 6 of learn might
be replaced with some form of binary search. Secondly,
COCONUT is currently implemented in an interpreted C-
like language (awk) and a reimplementation in “C” would
make it run faster. Nevertheless, given that this sub-optimal
exhaustive search implemented in an interpreted language
takes just a few minutes to generate our results, we are not
motivated to explore optimizations. Further, the exhaustive

Q
™
o
]
g
‘ ‘ ‘ coconut —<—
0 10 20 30 40 50
data used in training
100 1
N
a |
]
x 3
[on
‘ ‘ ‘ coconut —<— |

0 10 20 30 40 50
data used in training

Figure 7: BASE and COCONUT on the Figure 1.

nature of the search makes it hard to argue that some other
method might do better than COCONUT.

7. INCREMENTAL HOLDOUT RESULTS

Figure 7 shows the data of Figure 1 being processed by a
COCONUT incremental holdout study of the form:

{Repeats = 30, |[Train| = 4, |Test| = 56, = 4}|

That is, 30 times, the 60 projects of Figure 1 were ran-
domly reordered and divided into a small training set (with
4 projects) and a much larger test set (with 56 items). CO-
CONUT then calibrated COCOMO I and BASE using the
training set. The best calibrations found during training
for each model were then used by each model on the test
set. Four items from the test site were then shifted to the
training set and the training/testing process repeated. This
continued until the test set was exhausted.

In Figure 7, the COCONUT-calibrating-BASE results are
shown as a dashed line and the COCONUT-calibrating-
COCOMO I results are shown as a solid line. Note that the
mean PRED(30) values rise higher than the mean PRED(20)

values since PRED(20) is a more stringent test than PRED(30).

The error bars in Figure 7 show +1 standard deviation
around the mean for each ¢ is the incremental holdout study.
These error bars are larger at low X values (when the train-
ing set is small) and at high X values (when the test set is
small). Calibrating on a few projects, or testing on a few
projects, means that quirks with those projects can disperse
the results. The large variances at lower X values could
explain the contradictory results reported in the introduc-
tion; i.e. when one calibration study on X=8 projects was
successful but another failed.

7.1 Hypothesis Testing

7.1.1 Comparing Mean PREDs from Two Models

Figure 8 shows the results of hypothesis testing on the
Figure 7 results. At the top of each plot is a thick line that

basewitns F 1
ie - f
coconutwins [N
100 | 1
8
a 70 B
[T e
& sof [1
30 | oo 4
WINS m—
ot base ----- §
‘ ‘ __coconut ——
0 10 20 30 40 50
dataused in training
base wins | ' ' ' 1
tie F f
coconut wins -
100 R
o
a 70+ 1
i 0f
o [2]
30 S 4
WINS m—
ot base ----- §
‘ ‘ . coconut ‘
0 10 20 30 40 50

dataused in training

Figure 8: Hypothesis testing on the Figure 7 results.

can take one of three values: “base wins”, “tie”, and “co-
conut wins”. This line shows the results of a inter-method
t-test. For each X value, the null hypothesis is posed that
the mean PRED values for COCONUT-calibrating-BASE
is the same as for COCONUT-calibrating-COCOMO I. If
a two-sided t-test accepts this hypothesis, then there is no
significant difference between the PRED levels reached via
calibrating the two models.

At nearly all X values, COCONUT-calibrating-COCOMO I
“wins”; i.e. generates mean PRED values that are both sig-
nificantly different (at the 95% level) to the COCONUT-
calibrating-BASE results and which are higher than the BASE
PRED mean values. To the best of our knowledge, this is the
first experimental validation of the effort multipliers used in
COCOMO.

7.1.2 Comparing Changes in Mean PRED From One

Model
At the bottom of each plot in Figure 8 are two step func-

tions, one for COCONUT-tuning-BASE and one for COCONUT-

tuning-COCOMO I. This shows the result of the intra-method
t-test. This t-test checks that a method’s mean score at
some X value is significantly different to the last significant
change for that method. Such a comparison could reject the
hypothesis that two adjacent and different means are truly
different, if the variances of the means were too large.

When the mean performance of the studies methods stops
changing significantly, then methods have plateau-ed and
further data collection for that learner is superfluous. At
the 95% confidence level, in Figure 8, PRED(20) plateaus
at 54and PRED(30) plateaus at 72% after X=12 and X =20
projects respectively. As might be expected, it takes longer
to achieve good results on the more stringent PRED(20)
criteria than the weaker PRED(30) criteria.

8. DISCUSSION

A PRED(30)=70% result on holdout data seems as good
as the state-of-the-art results shown in Figure 5. For ex-

ample, the COCONUT result seems very close to the CO-
COMO 11 results of PRED(30) of 69% on holdout data re-
ported by Chulani et.al. [4]. Further, COCONUT achieves
this level of performance using far less effort that the Chu-
lani et.al. result:

e Chulani et.al.’s improvements on COCOMO-I needed
78 more projects, a DELPHI panel of experts, and
some Bayesian calibration.

e The peak PRED(30) values in Figure 7 were gener-
ated using the COCOMO I effort multipliers, 40 more
projects, no DELPHI panel, no Bayesian calibration,
and the very simple exhaustive enumeration technique
of COCONUT.

However, directly comparing the Figure 8 results with Fig-
ure 5 is problematic. Chulani et.al. did not report the stan-
dard deviation in their holdout experiments and without
that information, it is difficult to compare our method to
theirs. To be fair, it is quite correct that they did not re-
port standard deviation since they repeated their holdouts
only 15 times (a number too small to collect accurate in-
formation about standard deviations). Nevertheless, should
they ever repeat their study using 20 to 30 repeats, it would
be interesting to view their standard deviation results.

Also, the Chulani and COCONUT results come from dif-
ferent dataset (161 records in COCOMO II format vs 60
NASA records in COCOMO I format) and it would be pre-
ferred to apply the same techniques to same dataset (some-
thing we hope to do in the near future).

9. THREATS TO EXTERNAL VALIDITY

Two threats to our study come from linearity and granu-
larity of the effort models. If the effort model is non-linear,
then there could exist some region in the space of the cal-
ibration parameters < a,b > where the performance of the
estimation model changes radically. Linearity is a problem
in any extrapolation-based method that assumes that the
region between two samples changes smoothly between the
two samples. Granularity is a related concern: if a model is
searched in steps of size M, and the model’s behavior can
change dramatically is some space N< M, then the explorer
can miss important features of the model.

COCONUT’s complete search through the range of < a,b >
values makes no extrapolation assumptions. Hence, CO-
CONUT is immune to linearity problems.

Theoretically, COCONUT could suffer from the granular-
ity problem. However, Figure 6 steps through a in steps of
0.3 and b in steps of 0.05 and these steps are smaller than
the differences we see in the literature for < a,b > calibra-
tions for COCOMO 1. Hence, we are somewhat confident
that COCONUT does not have a granularity problem.

Other threats to external validity are covered by the in-
cremental holdout study methodology. By randomizing the
order of the input examples, we are reducing the impact of
order effects. By conducting holdout studies, we are reduc-
ing the chance of over-fitting. By only reported significant
changes (found via hypothesis testing), we are reducing the
odds that our results arise from some statistical quirk.

Nevertheless, the results presented in this paper come
from a single dataset. and, clearly, the above analysis needs
to be repeated on other data sets. Currently, we are explor-
ing access to COCOMO 1I data.

10. FUTURE WORK

Our results suggest an alternative to the Chulani et.al.
method for using expert opinion to calibration COCOMO-
like models.

One of the main motivations for the Bayesian analysis
of COCOMO-II was that the regression results from the
83+78 projects had slopes that contradicted certain expert
intuitions. For example, regression of the COCOMO data
concluded that building reusable components decreased de-
velopment costs. Most experts believe that the extra effort
required to generalize a design actually increases the cost of
building such components. This anomaly was explained as
follows: the 83478 projects did not contain enough samples
of projects that make heavy use of reuse. To DELPHI panel
and the subsequent Bayesian calibration was used to fill in
the gaps in the project data with expert knowledge. This
combination of DELPHI+Bayesian methods proved success-
ful: COCOMO-II had much higher PRED(N) levels than
COCOMO-I.

If 20 projects is enough for local calibration, then it might
be possible to simplify the DELPHI tuning process used by
Chulani et.al. in the COCOMO II project. Descriptions
of 20 projects could be generated from, say, 4 experts each
asked to describe 5 projects representing the kind of work
conducted by their company. Unlike a DELPHI panel, this
group of experts would not need to conduct extensive discus-
sions to explore their conclusions. If those descriptions were
made in terms of the COCOMO-I parameters, COCONUT
could then tune an effort model to that expert option using
those 20 expert-generated examples. We acknowledge that
this proposal is speculative. Nevertheless, if successful, it
could significantly reduce the data collection effort required
to calibrate a local model.

11. CONCLUSION

COCONUT conducts an exhaustive search over the space
of the < a,b > parameters in a COCOMO I model. This
technique is much simpler than other methods used to learn
good effort models including neural nets [3,13,15,20], linear
regression [1,2,13,14], rule induction [13], DELPHI/Bayesian
tuning [2, 4], and analogical reasoning [14], Further CO-
CONUT seems to yield PRED levels comparable to other
methods, and does so with less project data and fewer at-
tributes (no scale factors).

COCONUT was analyzed here using incremental holdout
(not jack knife) studies, combined with randomization and
hypothesis testing, repeated 30 times. We commend this ex-
perimental method to the effort estimation community since
it controls for the variance problem in holdout experiments;
and can report the minimum point at which enough project
data is enough.

This paper is offered as a baseline result with the hope
that other researchers will try to reproduce and out-perform
our results. Using incremental holdout studies, it would
be very clear if some effort estimation method out-perform
COCONUT. Such an alternate technique would be superior
if (a) it was simpler to implement or faster to execute than
COCONUT; (b) it achieves higher predictive accuracies or
lower variances than Figure 7 or Figure 8; and (c) it do
so using less project data than COCONUT. To facilitate
the search for a better-than-COCONUT technique, we have
followed the lead of Srinivasan and Fisher, and placed all

our data on the web.

We would also encourage the creation of public domain
effort estimation data sets. Naturally, we would have pre-
ferred to have conduct this study using other data sets such
as COCOMO-II. However, methodologically, it is important
that our results be reproducible. Therefore, we used the
COCOMO-I data in Figure 1 and look forward to the time
when we can try conduct incremental holdout studies with
COCONUT on other data sets

Finally, the COCOMO II rule that “10 projects is enough
for local calibration” needs some qualification. Certainly,
Figure 8 shows that improvements in mean PRED start lev-
eling off after 5-10 projects. However, at 5-10 projects, the
variance in the mean PRED values is still decreasing and we
we have seen statistically significant PRED improvements
up to 20 projects.

Acknowledgments

This research was conducted at Portland State University
under NASA contract NCC2-0979 and NCC5-685. The work
was sponsored by the NASA Office of Safety and Mission As-
surance under the Software Assurance Research Program led
by the NASA IV&V Facility. Reference herein to any spe-
cific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not constitute
or imply its endorsement by the United States Government.

12. REFERENCES

[1] B. Boehm. Software Engineering Economics. Prentice
Hall, 1981.

[2] Barry Boehm, Ellis Horowitz, Ray Madachy, Donald
Reifer, Bradford K. Clark, Bert Steece, A. Winsor
Brown, Sunita Chulani, and Chris Abts. Software Cost
Estimation with Cocomo II. Prentice Hall, 2000.

[3] G. Boetticher. When will it be done? the 300 billion
dollar question, machine learner answers. I[EEE
Intelligent Systems, June 2003.

[4] S. Chulani, B. Boehm, and B. Steece. Bayesian
analysis of empirical software engineering cost models.
IEEE Transaction on Software Engineerining, 25(4),
July/August 1999.

[5] S. Chulani, B. Boehm, and B. Steece. From multiple
regression to bayesian analysis for calibrating
COCOMO 11. Journal of Parametrics, 15(2):175-188,
1999.

[6] B. Clark. The Effects of Process Maturity on Software
Development Effort. PhD thesis, University of
Southern California, 1997. Available from
http://sunset.usc.edu/ bkclark/Research/
PMAT990406 . pdf.

[7] P.R. Cohen. Empirical Methods for Artificial
Intelligence. MIT Press, 1995.

[8] D. Ferens and D. Christensen. Calibrating software
cost models to Department of Defense Database: A
review of ten studies. Journal of Parametrics,
18(1):55-74, November 1998.

[9] H. Habib-agahi, S. Malhotra, and J. Quirk. Estimating
software productivity and cost for NASA projects.
Journal of Parametrics, pages 59-71, November 1998.

[10] R.C. Holte. Very simple classification rules perform
well on most commonly used datasets. Machine
Learning, 11:63, 1993.

[11] C.F. Kemerer. An empirical validation of software cost
estimation models. Communications of the ACM,
30(5):416-429, May 1987.

[12] K. Lum, J. Powell, and J. Hihn. Validation of
spacecraft cost estimation models for flight and
ground systems. In ISPA Conference Proceedings,
Software Modeling Track, May 2002.

[13] Carolyn Mair, Gada Kadoda, Martin Lefley, Keith
Phalp, Chris Sch ofield1, Martin Shepperd, and Steve
Webster. An investigation of machine learning based
prediction systems. The Journal of Systems and
Software, 53(1):23-29, 2000.

[14] M. Shepperd and C. Schofield. Estimating software
project effort using analogies. IEEE Transactions on
Software Engineering, 23(12), November 1997.
Available from
http://wuw.utdallas.edu/ rbanker/SE_XII.pdf.

[15] K. Srinivasan and D. Fisher. Machine learning
approaches to estimating software development effort.
IEEFE Trans. Soft. Eng., pages 126137, February
1995.

[16] The Standish Group Report: Chaos, 1995. Available
from http://www4.in.tum.de/lehre/vorlesungen/
vse/WS2004/1995_Standish_Chaos. %pdf.

[17] S. Stukes and H. Apgar. Applications oriented
software data collection: Software model calibration
report, TR-9007/549-1, management consulting and
research, 15, March 1991.

[18] S. Stukes and D. Ferens. Software cost model
calibration. Journal of Parametrics, 18(1):77-98, 1998.

[19] 1. H. Witten and E. Frank. Data Mining: Practical
Machine Learning Tools and Techniques with Java
Implementations. Morgan Kaufmann, 1999.

[20] G. Wittig and G. Finnie. Estimating software
development effort with connectionist models.
Information and Software Technology, 39(7):469-476,
1997.

