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Abstract 

This paper addresses the issues related to improving the overall 
quality of the requirements tracing process for Independent 
Verification and Validation analysts.  The contribution of the 
paper is three-fold:  we define requirements for a tracing tool 
based on analyst responsibilities in the tracing process; we 
introduce several new measures for validating that the 
requirements have been satisfied; and we present a prototype 
tool that we built, RETRO (REquirements TRacing On-target), 
to address these requirements.  We also present the results of a 
study used to assess RETRO’s support of requirements and 
requirement elements that can be measured objectively.   

Research 

1. Introduction 
 
   The fundamental purpose of Verification and 
Validation (V&V) and Independent Verification and 
Validation (IV&V) is to ensure that the right processes 
have been used to build the right system.  To that end, we 
must verify that the approved processes and artifacts are 
guiding development during each lifecycle phase as well 
as validate that all requirements have been implemented 
at the end of the lifecycle.  A requirements traceability 
matrix (RTM) is a prerequisite for both of these.  Though 
Computer-Aided Software Engineering tools such as 
DOORS [23], RDD-100 [12], and Rational RequisitePro 
[20] can assist, we have found that often developers do 
not build the RTM to the proper level of detail or at all.  
V&V and IV&V analysts are faced with the time 
consuming, mind numbing, person-power intensive, error 
prone task of “after the fact” requirements tracing to build 
and maintain the RTM.  Examples of V&V/IV&V 
activities that can’t be undertaken without an RTM 
include, but are not limited to:  verification that a design 
satisfies the requirements; verification that code satisfies a 
design; validation that requirements have been 
implemented and satisfied; criticality analysis; risk 
assessment; change impact analysis; system level test 
coverage analysis; regression test selection.  V&V/IV&V 
can be viewed as the backbone of safety-critical, mission-
critical, and Critical-Catastrophic High Risk (CCHR) 
systems.  Similarly, the RTM can be viewed as the 
backbone of V&V/IV&V. 

   Requirements tracing consists of document parsing, 
candidate link generation, candidate link evaluation, and 
traceability analysis.  As an example, consider 
requirements in a high level document such as a System 
Specification being traced to elements in a lower level 
document such as a Software Requirement Specification.  
Generally, after the documents have been parsed and 
requirements have been extracted from the two document 
levels, an analyst will manually read each high level 
requirement and low-level element and assign keywords 
to each.  A keyword-matching algorithm is then applied 
to build lists of low-level elements that may potentially 
satisfy a given high-level requirement.  These are called 
candidate links.  There are two commonly accepted 
metrics in evaluating candidate links:  the percentage of 
actual matches that are found (recall) and the percentage 
of correct matches as a ratio to the total number of 
candidate links returned (precision).  
  In the process called candidate link evaluation, the 
analyst reviews the candidate links and determines which 
are actual, or true links, and which are not links (false-
positives, bad links).  To achieve this, the analyst 
typically examines visually the text of the requirements, 
determines the meanings of the requirements, compares 
the meanings and makes the decision based on whether 
(s)he believes that the meanings are sufficiently close. 
This determination is based on human judgment and bears 
all the advantages and disadvantages that are associated 
with that. After tracing is complete, the analyst generates 
reports of the high level requirements that do not have 
children and the low level elements that do not have 
parents (traceability analysis). 
   Current approaches to after-the-fact tracing have 
numerous shortcomings:  they require the user to perform 
interactive searches for potential linking requirements or 
design elements, they require the user to assign keywords 
to all the elements in both document levels prior to 
tracing, they return many potential or candidate links that 
are not correct, they fail to return correct links, and they 
do not provide support for easily retracing new versions 
of documents.  To ensure requirement completion and to 
facilitate change impact assessment, a method for easy 
“after-the-fact” requirements tracing is needed.   

  



   Previously, we focused solely on the problem of 
generating candidate links, discussed in [11].  
Specifically, we showed that information retrieval (IR) 
methods were effective and efficient when used to 
generate candidate link lists.  Our focus has now 
broadened to the overall requirements tracing process.  
The penultimate goal of this NASA-funded research is to 
develop an efficient, effective tracing tool that makes the 
best use of the analyst’s time and expertise (the ultimate 
goal being the actual improvement in requirements 
tracing analysis).  To that end, this paper provides three 
contributions: (i) we investigate the analyst 
responsibilities in performing tracing; (ii) we derive 
unique high-level analyst-oriented tool requirements from 
these; and, (iii) we present a prototype tool, RETRO 
(REquirements TRacing On-target), and evaluate it with 
respect to the requirements. 
   The paper is organized as follows.  Section 2 presents 
the requirements for an effective requirements tracing 
tool.  Section 3 discusses our tool and how it satisfies the 
requirements of Section 2.  Section 4 discusses the results 
obtained from evaluation.  Related work in requirements 
tracing is presented in Section 5.  Finally, Section 6 
presents conclusions and areas for future work. 
 
2. Requirements for an effective 
requirements tracing tool 
 
   To set the stage for our work, we must first understand 
the responsibilities of an analyst who has been tasked to 
perform a requirements trace.  The analyst is required to: 
(a) identify each requirement; (b) assign a unique 
identifier to each requirement; (c) for each requirement to 
be traced (say for example from a high level document to 
a low level document), locate all children requirements 
present in the lower level document; (d) for each low 
level requirement, locate a parent requirement in the high 
level document; (e) examine each high level traced 
requirement and determine if it has been completely 
satisfied by the low level requirements that were selected 
as links; (f) prepare a report that presents the traceability 
matrix (low level requirements traced to high level 
requirements); and (g) prepare a summary report that 
expresses the level of traceability of the document pair 
(that is, what percentage of the high level requirements 
were completely satisfied, what percentage of low level 
documents had no parents, etc.).   
   Let us next examine how automation may facilitate 
these responsibilities.  A tool could easily assist the 
analyst in the identification and subsequent extraction and 
“tagging” of requirements [(a), (b)].  Similarly, generation 
of requirements traceability matrix reports and traceability 
summary reports lends itself well to automation [(f), (g)].  
In fact, a number of proprietary tools, such as 

SuperTracePlus (STP) [10,16], and commercial tools 
already address these items.  The remaining items are of 
greater interest and importance to researchers and 
practitioners.  Items (c)–(e) conceivably require the 
analyst to examine every low level requirement for each 
high level requirement.  Even in a small document pair 
that consists of 20 high level requirements and 20 low 
level requirements, an analyst might have to examine 400 
candidate links.   
   If we build a tool to automate items (c) - (e), the analyst 
will still have certain critical responsibilities.  These 
include evaluating candidate links; making decisions on 
whether or not candidate links should be accepted or 
rejected; making decisions on whether or not to look for 
additional candidate links; making decisions on whether 
or not a requirement has been satisfied completely by its 
links; and deciding if the tracing process is complete. It is 
clear that a human analyst must have the final say in all 
decisions. The key to successful automation lies not in 
removing the human decision-maker from the loop, but 
rather, in introducing an automated agent that takes care 
of the mundane, time-consuming parts of the process and 
allows the analyst to concentrate on the parts that really 
require human decision-making.  What can be automated, 
as shown in [11], is the generation of candidate links to 
address items (c) and (d).  With this in mind, we move to 
the identification of the desirable attributes of an effective 
tracing tool. 
   Most research in the area of requirements tracing has 
focused on models of requirements tracing [19] or has 
looked at recall and precision to assess the accuracy of the 
applied linking algorithms [3, 14].  To our knowledge, 
there has not been work published that details the 
requirements for an effective requirements tracing tool. In 
addition to specifying such requirements, we provide a 
validation mechanism for each requirement, and then in 
Sections 3 and 4 demonstrate that our tracing tool satisfies 
the requirements we have addressed to date.  Note that we 
have chosen to define the requirements in an informal, 
textual narrative format.  We do not claim that these 
requirements possess the quality attributes that should be 
present in formal software requirements.  Rather, we offer 
them as a starting point for discussion with other 
researchers. 
 First, we define a requirements tracing tool as a special-

purpose software that takes as input two or more 
documents in the project document hierarchy (without 
loss of generality we assume that individual requirements 
in these documents have been successfully defined and 
are easily extractable) and outputs a traceability matrix, 
that is a mapping between the requirements of the input 
documents. In  the rest of the paper, we concentrate on 
the process of forward tracing for a pair of documents --- 
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most other requirements tracing tasks can be reduced to 
this problem. 
   From the perspective of a development manager or a 
safety manager (in the case of a safety-critical system), 
the most important attribute that a requirements tracing 
tool can possess is that its final results are believable and 
can be trusted.  Similarly, the analysts who use the tool 
should have confidence in the candidate link lists 
provided by the software (addressing items (c) and (d)).  
Lack of this quality in a tool might result in an analyst 
wasting time by searching for additional candidate links.  
We refer to this attribute as “believability,” and it 
constitutes the first requirement. 
Requirement 1: 
Specification: 
“Believability” - The requirements tracing tool shall 
generate candidate links and shall solicit analyst feedback 
and shall re-generate candidate links based on the 
feedback such that the final trace shall very accurately 
reflect the theoretical “true trace.”  
Believability is constituted of three sub-requirements or 
sub-elements:  accuracy, scalability, and utility discussed 
below. 
Accuracy:  The extent to which a requirements tracing 
tool returns all correct links and the extent to which the 
tool does not return incorrect links. 
Scalability:  The extent to which the requirements tracing 
tool is able to achieve accuracy for “small” tracesets as 
well as “large” tracesets.  In this context, we define a 
“small” traceset to constitute 3000 combinatorial links or 
less.  For example, a traceset consisting of 20 high level 
requirements and 50 low level requirements would have 
20 x 50 = 1000 combinatorial links.  Any traceset with 
more than 3000 combinatorial links is considered large. 
Utility:  The extent to which an analyst believes the tool 
has helped to achieve good trace results.  If the analyst 
has (justified) confidence in the accuracy and scalability 
of the tool, the tool possesses utility for the analyst.  In 
addition to analyst belief about accuracy and scalability, 
other items can impact utility.  This is a very subjective 
item, and we are still in the process of elucidating its sub-
elements. Thus far we have defined Operability and 
Process Enforcement.  Operability is the capability of the 
software product to enable the user to operate and control 
it [4].  Process Enforcement refers to the tool 
implementing tracing in such a way that the analyst is 
guided through the process.   
Validation mechanism: 
The standard measures of accuracy are recall and 
precision.  Accuracy can be measured objectively, but 
only when we have the theoretical “true trace” (i.e., the 
actual traceability matrix) available.  Even when we do 
not have such an “answer set” a priori, we can build an 
RTM using the tool, capturing the candidate links 

returned at each stage.  Then, we can compare the 
candidate links supplied by the tool at each stage to the 
final RTM (treating it as the answer set).  

Precision and recall quantify accuracy in two different, 
complimentary, even orthogonal, ways. In an ideal 
setting, a list of candidate links is accurate when it 
contains all the high—low level requirements pairs that 
trace to each other and does not contain any extra pairs. 
Recall measures the degree to which the first condition is 
met, while precision looks at the second. We note a 
certain asymmetry between the two measures. A 
candidate link list with high recall and low precision 
means that the analyst has to weed out the many false-
positive links from it before the requirements tracing task 
is complete. On the other hand, if the same list has high 
precision and low recall, the analyst would have to 
examine a lot of potential links outside the list. In this 
respect, high-recall, low-precision lists of links appear to 
be preferable to high-precision, low recall links.  That is 
because humans seem to be better at determining whether 
a specific pair of links from the list is a match than at 
discovering new pairs of links in the document from 
scratch.  
    For scalability, we must examine the tool’s results for 
both small and large trace sets to determine that the 
accuracy has not been significantly degraded. Validation 
of utility requires subjective measures and hence a 
separate experimental design.  In addition, we must first 
establish accuracy and scalability before progressing to a 
subjective study, thus ensuring that the tool performs in 
such a way that there is a basis for analyst confidence.  
This study is left for future research.   
Discussion: 
Believability is a high level, overarching requirement.  
Utility is important because in any tracing exercises other 
than controlled experiments, the theoretical “true trace” 
will not be known.  Therefore, an analyst has to decide 
whether candidate links are correct or not and/or whether 
to search for additional candidate links.  The analyst must 
feel confident that good results have been achieved by 
using the tool.   
   Scalability is not addressed in this paper, as we do not 
currently have large trace sets with a “true trace” (See 
Section 6).  Accuracy is evaluated, though.  Recall is 
more important in tracing than precision because we do 
not want analysts to have to search for additional 
candidate links.  We also want precision to be as high as 
possible.  But note that precision values can be a bit 
misleading.  For example, 50% precision means the 
existence of one false positive for each true link, which 
would be relatively easy for the analyst to deal with.  
Improvement beyond 50% does not provide as much 
benefit to the analyst as for example improving from 10% 
to 33% (which corresponds to improving from one true 
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link out of 10 to one true link out of three candidates).  
Thus, drastic improvements in precision occur only at low 
percentages.  The true measure of the effectiveness of a 
tracing tool lies in its ability to help an analyst find the 
correct links, as easily as possible.  In earlier studies [11], 
we found that an analyst using the STP requirements 
tracing tool actually ended up with a worse final answer 
than the tool had originally proposed.  If the analyst 
throws away good links, recall will decrease.  If the 
analyst keeps bad links, precision will decrease.  It is 
important that the tool prompts/assists the analyst to make 
the right choices (addressing items (c) and (d)).  To that 
end, we have requirement 2, “discernability.” 
Requirement 2: 
Specification: 
“Discernability” The requirements tracing tool shall 
generate candidate links and display their similarity 
measures in such a way to make it easy for the analyst to 
discern true links (from the theoretical “true trace”) from 
false links (candidate links that are not really links). 
Validation mechanism: 
There are four aspects to this requirement.  In general, we 
want to ensure that the software communicates 
information (such as requirement text), process flow 
(such as what to do next), and results in a manner that 
facilitates the tracing process.  We refer to this as 
communicability.  In addition, we want to ensure that, as 
the stages of tracing proceed, good links (true links) rise 
to the top of the candidate link list and that bad links 
(false links) fall to the bottom.  And we want to ensure 
that the similarity measures given for candidate links 
reflect the “cut off” line between true and false links.  To 
that end, we define objective measures for all the items 
above except communicability.  “Good links rising” and 
“bad links sinking” are measured using DiffAR and Lag, 
while the existence of a cutoff is studied using different 
filtering techniques on the candidate link lists.  These 
measures are formally defined in Section 4. 
Discussion: 
This requirement must be satisfied to support the 
satisfaction of Requirement 1.  As has been suggested 
above, requirements tracing is an iterative process.  An 
analyst will examine a subset of the candidate links and 
then determine if the links are good or not.  This 
information, even for a small number of candidate links, 
is very valuable and should be fed back into the 
algorithms to support the generation of more accurate 
candidate links.  If the tool does not provide the candidate 
links in a manner that facilitates discernment, the analyst 
will get frustrated with the tool and will not be able to 
efficiently complete the task.  That leads us to our final 
requirement, “endurability.” 
 
Requirement 3: 

Specification: 
“Endurability:” The requirements tracing tool shall 
generate candidate links and shall solicit analyst feedback 
and shall re-generate candidate links based on the 
feedback such that the process of requirements tracing is 
not arduous. 
Validation mechanism: 
Part of Endurability can be measured objectively by 
examining the time it takes to complete a tracing project 
using the tool.  However, Endurability also refers to 
subjective satisfaction of the analyst with the tool and 
requires subjective measures and a separate experimental 
design.  This study is left for future research.   
Discussion: 
In general, requirements tracing is a very time consuming, 
arduous process, even when using a tool.  We strive to 
decrease the tedium of the tracing experience for the 
analyst (addressing items (c) - (e)). This is a subjective 
item, tying in with usability.  A separate study is planned 
to assess analyst attitude toward our tracing tool.   
 
3. Effective requirements tracing with  
RETRO 
 

3.1 Why use Information Retrieval? 
 

   The problem of requirements tracing boils down to 
determining, for each pair of requirements from high- and 
low-level requirements documents, whether they are 
“similar.” Stated as such, requirements tracing bears a 
striking similarity to the standard problem of Information 
Retrieval (IR): given a document collection and a query, 
determine which documents from the collection are 
relevant to the query. In the tracing scenario, high-level 
requirements play the role of queries, while the 
“document collection” is made up of low-level 
requirements (these roles are switched if back-tracing is 
desired). The key to understanding whether IR methods 
can aid requirements tracing lies in examining the concept 
of requirement “similarity.”  This concept is used by the 
analysts to determine the trace.  We must see if 
requirements similarity can be modeled, or at least 
approximated, by the document relevance notions on 
which different IR algorithms rely.  
   The major difference in the similarity concepts used by 
analysts and the measures used in IR algorithms is  that 
human analysts are not limited in their decisions by 
purely arithmetical considerations. A human analyst can 
use any tool available in her arsenal to determine the 
trace, and that may include “hunches,” jumping to 
conclusions, and/or ignoring assignments prescribed by 
any specific methodology. Such diversity of sources for 
human decision-making can be both a blessing and a bane 
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to the requirements tracing process. On one hand, it may 
lead to discovery of hard-to-find matches between the 
requirements. On the other hand, human analysts do make 
errors in their work.  These errors may be explicit, the 
analyst discards correct links and keeps incorrect ones, 
and implicit, the analyst does not notice some of the true 
links between the documents. Similarity (relevance) 
measures computed by IR algorithms are not prone to 
errors in judgment. But they may fail to yield connections 
that humans might notice despite differences in text. 
   Even taking this observation into account, there is still 
enough evidence to suggest that IR methods are 
applicable. Indeed, the actual procedures employed by an 
IR algorithm in RETRO and by the analyst, working, for 
example with the STP tool [10,16] are very similar.  In 
both cases, the lists of requirements from both document 
levels are scanned and for each requirement a 
representation based on its text is chosen. After that, in 
both instances, matching is done automatically, and the 
analyst then inspects the candidate links. 
 
3.2 RETRO 
 

   In contrast with such comprehensive requirements 
management tools as STP [10, 16], RETRO 
(REquirements TRacing On-target) is a special-purpose 
tool, designed exclusively for requirements tracing. It can 
be used as a standalone tool to discover traceability 
matrices. It can also be used in conjunction with other 
project management software: the requirements tracing 
information is exported in a simple, easy-to-parse XML 
form. The overall look of RETRO GUI (Win32 port) is 
shown in Figure 1. 

 
Figure 1. A screenshot of RETRO.  

   At the heart of RETRO lies the IR toolbox (C++): a 
collection of implementations of IR methods, adapted for 
the purposes of the requirements tracing task. Methods 
from this toolbox are accessed from the GUI block (Java) 
to parse and analyze the incoming requirements 

documents and construct relevance judgments. The 
Filtering/Analysis component (C++) of RETRO takes in 
the list of candidate links constructed by any of the 
toolbox methods and prepares a list to be shown to the 
analyst. This preparation may involve the application of 
some cleaning, filtering and other techniques. The GUI of 
RETRO guides the entire requirements tracing process, 
from setting up a specific project, to going through the 
candidate link lists. At the top of the screen, the analyst 
sees the list of high level requirements (left) and the list of 
current candidate links for it, with relevance judgments 
(right). In the middle part of the interface, the text of the 
current pair of requirements is displayed.  At the bottom, 
there are controls allowing the analyst to make a decision 
on whether the candidate link under consideration is, 
indeed, a true link. This information is accumulated and, 
upon analyst request, is fed into the feedback processing 
module (C++).  The module takes the results of analyst 
decisions and updates the discovery process consistent 
with the changes.  If needed, the IR method is re-run and 
the requirements tracing process proceeds into the next 
iteration. 
 

3.3 Information Retrieval methods in RETRO 
 

   The IR toolbox of RETRO implements a variety of 
methods for determining requirement similarity.  For this 
study we have used two IR algorithms implemented 
previously [11]: tf-idf vector retrieval and vector retrieval 
with a simple thesaurus. To process feedback we have 
used the Standard Rochio [9] method for the vector 
model. The methods used are briefly described below.  
  
3.3.1  Tf-Idf model.  Standard vector model (also known 
as tf-idf model) for information retrieval is defined as 
follows. Let V = {k1,…,kN} be the vocabulary of a given 
document collection. Then, a vector model of a document 
d is a vector (w1,…,wN) of keywords weights, where wi is 
computed as .)( iii idfdtfw ⋅=  Here tfi(d) is the so-
called term frequency: the frequency of keyword ki in the 
document d, and idfi, called inverse document frequency 

is computed as 
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=i df2logidf , where n  is the 

number of documents in the document collection and dfi 
is the number of documents in which keyword ki occurs. 
Given a document vector d=(w1,…,wN) and a similarly 
computed query vector q=(q1,…,qN) the similarity 
between d and q is defined as the cosine of the angle 
between the vectors: 
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3.3.2  Tf-Idf + Simple Thesaurus.  The second method 
used in [11] extends tf-idf model with a simple thesaurus 
of terms and key phrases. A simple thesaurus T is a set of 
triples <t, t’,α>, where t and t’ are matching thesaurus 
terms and α is the similarity coefficient between them. 
Thesaurus terms can be either single keywords or key 
phrases – sequences of two or more keywords. The 
vector model is augmented to account for thesaurus 
matches as follows. First, all thesaurus terms that are not 
keywords (i.e., thesaurus terms that consist of more than 
one keyword) are added as separate keywords to the 
document collection vocabulary. Given a thesaurus 
T={<ki,kj,αij>}, and document/query vectors 
d=(w1,…,wN), q=(q1,…,qN), the similarity between d 
and q is computed as: 
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3.4 Incorporating relevance feedback  
 

   Relevance feedback is a technique to utilize user input 
to improve the performance of the retrieval algorithms.  
Relevance feedback techniques for tf-idf methods adjust 
the keyword weights of query vectors according to the 
relevant and irrelevant documents found for them, as 
supplied by the user. More formally, let q be a query 
vector, and Dq be a list of document vectors returned by 
some IR method given q. Further, assume that D has two 
subsets: Dr of size R of documents relevant to q and Dirr   
of size S of irrelevant documents that have been provided 
by the user. Note that Dr and Dirr are disjoint, but do not 
necessarily cover the entire set Dq.  We use Standard 
Rochio [9] feedback processing method: 
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Intuitively, query q is adjusted by adding to its vector a 
vector consisting of the document vectors identified as 
relevant, and subtracting from it the sum of all document 
vectors identified as false positives. The first adjustment 
is designed to potentially increase recall. The second 
adjustment can potentially increase precision. The 
constants α, β, γ in the formulas above can be adjusted in 

order to emphasize positive or negative feedback as well 
as the importance of the original query vector (in our tests 
all three values were set to 1). Once the query vectors 
have been recomputed, the selected IR algorithm is re-run 
with the modified query vectors.  This cycle can be 
repeated until the user is satisfied with the results.   

4. Evaluation 
 

4.1  Study design 
  
   The purpose of our current study is to see whether 
RETRO satisfies the requirements specified in Section 2. 
We notice that all three major requirements have two 
components: objective, that can be measured by running 
tests on the tool, and subjective, examining user 
interaction with it.  This study validates parts of the 
requirements that can be measured objectively. A study of 
the use of the tool by analysts for the purpose of 
determining its usability is planned next. In particular, in 
this study, we concentrate on determining the accuracy 
and discernability of the results of the analysis.  
  To assess the accuracy and discernability of 
requirements tracing with RETRO, we performed tests on 
tf-idf and thesaurus approaches, as described in Section 
3.3.  We used a modified dataset from [11] based on open 
source NASA Moderate Resolution Imaging 
Spectroradiometer (MODIS) documents [13,15].  The 
dataset contains 19 high level and 49 low-level 
requirements.  The trace for the dataset was manually 
verified. The “theoretical true trace” built for this dataset 
consisted of 42 correct links. 
  In the test, we have assumed that during the feedback 
process, analysts provide correct information to the tool.  
That is, both true links and false positives, when 
discovered are marked as such. At the beginning of each 
test, the traceset was loaded into RETRO and a particular 
IR method (tf-idf, or thesaurus) was selected. For each 
method, four different feedback strategies or behaviors, 
called Top 1, Top 2, Top 3 and Top 4 were tested. The 
Top i behavior meant that at each iteration, we simulated 
correct analyst feedback for the top i unmarked candidate 
links from the list for each high-level requirement. For 
example, for each high level requirement, Top 1 behavior 
examined the top candidate link suggested by the IR 
procedure that had not yet been marked as true. If the link 
was found in the verified trace, it was marked as true, 
otherwise – as false. After repeating the Top i relevance 
feedback procedure for each high level requirement, the 
answers were submitted to the feedback processing 
module.  At this point, the Standard Rochio procedure 
was used to update query (high-level requirement) 
keyword weights, and to submit the new queries to the IR 
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method. The process continued for a maximum of eight 
iterations or until the results had converged. 
 To check the accuracy of the results, we measured 
precision and recall of the candidate link lists produced at 
each iteration of the process.  
 To check discernability, we devised and computed a 
number of measures that allow us better insight into the 
evolution of the candidate link lists provided by RETRO 
from iteration to iteration. As stated in Section 2, we want 
to ensure that (a) true links rise to the top of the lists, (b) 
false positives sink to the bottom of the lists, and that (c) a 
reasonable cut-off is possible that separates the majority 
of the true links from the majority of the false positives.  
The metrics measuring the degrees to which (a) and (b) 
were satisfied are: 
ART: Average relevance of a true link in the list; 
ARF: Average relevance of a false positive in the list; 
DiffAR = ART – ARF: the difference between average 
relevances of true links and false positives; and 
Lag: average number of false positives with higher 
relevance coefficient than a true link. 
To measure the ability to establish a cut-off, we have 
examined a number of filtering techniques. A filtering 
technique is a simple decision procedure that examines 
each candidate link produced by the IR method and 
decides whether to show it to the analyst. In our study, in 
addition to the test run involving no filtering, we used the 
following three filtering techniques:  
Above 0.1: throw out a candidate link if its relevance is 
below 0.1. 
Within 0.5: For each high-level requirement, compare the 
relevance of each candidate link with the relevance of the 
top candidate link. The candidate link is retained iff its 
relevance is within 0.5 of the relevance of the top link. 
Top 42. For each high-level requirement i, retain the top 
ki candidate links, where ki is the number of true links for 
i. The filtered answer set contained 42 (or fewer) 
candidate links distributed exactly as in the answer set. 

 
4.2 Results 
 

   We address accuracy followed by discernability.  As 
discussed above, recall and precision will be used to 
assess accuracy.  The precision and recall results obtained 
in our tests are summarized in Table 1.  The first column 
indicates the iteration, with iteration 0 being the iteration 
before the feedback.  In each cell, precision is indicated 
first followed by recall. For example, iteration 7, Top 3, 
for Thesaurus method had precision of 24.6% and recall 
of 80.9%.  The maximal precision and recall achieved in 
each experiment are highlighted and the maximal values 
for each retrieval method are also underlined. The results 

are also visualized in Figure 2, which contains the 
precision/recall trajectories for all experiments, grouped 
by the IR method used (top: tf-idf, bottom: simple 
thesaurus).  
   The importance of the results ties back to the 
requirement of believability in Section 2.  The candidate 
link lists generated using the thesaurus method are decent, 
but are greatly improved with analyst feedback.  Also, 
improvements in recall are seen in early iterations (as 
early as iteration 3) and with the analyst only providing 
feedback on the Top 2 links.  We feel that these accuracy 
results should also contribute to utility and endurability.  
Note that our shortcoming in recall is accounted for by a 
few requirements for which the IR methods did not return 
any true candidate links at iteration 0.  This meant that 
feedback methods could not improve as they could not 
acquire positive feedback information. 
   Precision does not appear to improve as much.  It 
doubles over six or seven iterations, but on iterations 1 
and 2 it decreases before starting to increase again with 
iteration 3.  However, precision was improved without 
much impact to recall by using filtering.  Table 2 
summarizes the results of applying different filters to the 
candidate link lists. For each filter and for each test run, 
the best precision/recall pair was always achieved on the 
last iteration of the experiment – a contrast with the 
results without filtering. For each filter, the table also 
contains the differences in percentages for recall and 
precision between the list with no filtering and the list 
obtained by applying the filter. As evidenced in the table, 
the improvement in precision is significant for most filter-
--IR algorithm---behavior combinations.  An important 
observation is that removal of a candidate link from the 
list by a filtering technique at some iteration does not 
preclude this link from appearing again in a subsequent 
iteration.  What this means is that if we filtered out some 
good links originally, they may reappear later with higher 
similarity measures.  Filtering also ties to discernability. 
   Recall that we use filtering to determine if there is 
eventual separation between good and bad links in the 
candidate link list, or the cutoff sub-element of 
discernability.  Our results show that for above 0.1 in Top 
42 filters such separation is eventually achieved for most 
of the behaviors, as precision increases drastically while 
the decrease in recall is not large.  For example, using 
thesaurus retrieval for Top 3 behavior and above 0.1 
filtering, precision is almost 40% with recall of 80%.  
   The other sub-elements of discernability examine 
whether good links rise to the top of the list and bad links 
sink to the bottom.   Recall that we use DiffAR and Lag to 
assess these.  Figure 3 shows the changes in the DiffAR 
metric: the difference in average relevances between the 
true links (ART) and false positives (ARF) as the iterations 
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Table 1. Results of experiments: Precision and 
recall.  

progress.  Intuitively, the larger the difference, the more 
likely it is that most of the true links will be at the top of 
the candidate link lists for high-level requirements. Note 
from the figure that the difference between ART and ARF 
is around 0.2 at iteration 0 for both tf-idf and simple 
thesaurus retrieval algorithms. At subsequent iterations 
for both retrieval algorithms and all behaviors, DiffAR 
grows significantly, ranging from 0.489 to 0.758 at the 
last iterations. 
   While DiffAR measures the quantitative separation 
between true links and false positives, Lag is a measure of 
qualitative separation. Lag is defined for each true link in 
the list as the number of false positives for its high-level 
requirement that have a higher relevance (i.e., the number 
of false positives that are higher up in the list). The Lag of 
a list of candidate links is the average Lag of its true links. 
Note that when Lag=0, total separation of links has been 
achieved: all true links appear higher up in the lists of 
candidate links than all false positives.  
Figures 4 and 5 show the progress of the Lag measure for 
tf-idf and thesaurus retrieval tests respectively. It can be 
observed that in all experiments Lag behaved in a similar 
manner. For both tf-idf and thesaurus retrieval, Lag starts 
at just above 6. During the first 1-2 iterations, Lag grows, 

and for some experiments can go as high as 10. But at  
subsequent iterations, Lag drops significantly, and in all 
but one experiment, finishes under 3. 
 

Figure 2.  Recall, precision for all behaviors for 
Thesaurus retrieval. 

 

I Top 1 Top 2 

 Tf-IDF Thesaurus Tf-IDF Thesaurus 

0 11.3%, 57.1% 12.2%, 64.2% 11.3%, 57.1% 12.2%, 64.2% 

1 8.4%, 59.5% 9.4%, 69% 6.9%, 59.5% 7.1%, 66.6% 

2 7.7%, 59.5% 8.3%, 64.2% 9.2%, 69% 9.9%, 73.8% 

3 9.2%, 66.6% 8.6%, 61.9% 12.2%, 73.8% 12.1%, 80.9% 

4 9.9%, 71.4% 10.6%, 71.4% 15.1%, 73.8% 15.7%, 83.3% 

5 12.5%, 76.1% 12.5%, 78.5% 17.9%, 71.4% 15.8%, 80.9% 

6 15.3%, 76.1% 14.8%, 76.1% 20%, 69% 17.6%, 83.3% 

7  16%, 71.4% 23.3%, 69% 21.9%, 80.9% 

8  17.3%, 73.8% 25.6%, 69% 25%, 78.5% 

I Top 3 Top 4 

 Tf-IDF Thesaurus Tf-IDF Thesaurus 

0 11.3%, 57.1% 12.2%, 64.2% 11.3%, 57.1% 12.2%, 64.2% 

1 7.3%, 61.9% 7.8%, 66.6% 8.3%, 69% 8.6%, 76.1% 

2 11.6%, 73.8% 10.6%, 83.3% 12.1%, 76.1% 12.4%, 80.9% 

3 14.6%, 73.8% 13.6%, 80.9% 15.1%, 73.8% 15.3%, 80.9% 

4 18.6%, 76.2% 17.4%, 83.3% 13%, 61.9% 16.7%, 78.5% 

5 17.1%, 71.4% 18.1%, 83.3% 19.4%, 73.8% 18.6%, 78.5% 

6 20.9%, 73.8% 20.2%, 80.9% 22.7%, 71.4%  

7 21.4%, 69% 24.6%, 80.9% 22.7%, 71.4%  

8 22.7%, 66.6%    
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 Figure 3.  Recall, precision for all behaviors for 

TF-IDF retrieval. 
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4.3 Discussion of results 
 
   Table 3 summarizes the contributions of the paper.  It is 
evident that RETRO supports the objective sub-elements 
of discernability.  The measures ART, ARF, and DiffAR 
indicate that using the relevance feedback option of 
RETRO provides the analyst with similarity measures that 
clearly   discern between good   links  and   bad   links.  In  
addition, the Lag measure shows that by the later 
iterations, there are very few bad links at the top of the 
candidate link lists. 

 . 



Table 2.  Filtering summary. 

 
Table 3.  Paper Summary. 

   

 

A special comment needs to be made concerning the 
precision values obtained during the experiment. As 
shown in Tables 2 and 3, precision in our experiments 
hovered between 20 and 25% without filters and went up 
to 30—40% without significant loss in recall when 
filtering was used. To put these numbers into perspective,  
we note, that when precision is 20% (assuming perfect 
recall), for each correct link in the list of candidate links, 
there are four false positives, i.e., in our case, the number 
of false positives in the list would be 42*4 = 168 and the 
total size of the candidate link list is 42*5 =  210. This is 
about 22% of the total number of potential links (19*49 =  
931).  Consider, for example the Top 3 run using Above 
0.1 filter (see Table 3). Here, recall of 80.9% means that 
34 out of 42 links from the theoretical true trace have 
been identified correctly. Precision of 39.5% means that 
the total number of the candidate links in the list was 86, 
i.e., about 9% of the total number (931) of potential links. 
We also note that when comparing precision numbers, 
their ratio is more important than their absolute 
difference. It is much better to be able to raise precision 
from 10% to 20% (from 420 to 210 candidate links with 
perfect recall) than from 70% to 80% (from 60 to 52 
candidate links with perfect recall), as the decrease in the 
size of the candidate link lists is proportional to the ratio, 
not the absolute different. Because of these 
considerations, precision levels obtained during the 
experiment are quite acceptable in practice. 

 No Filter Above 0.1 Within 0.5 Top 42 

p 17.3 44.4 63.6 64.1 Top 1 

best r 78.5 61.9 33.3 59.5 

p 27.1 46.3 46.8 Top 1 

diff r 

 

-16.6 -45.2 -19 

p 25 37.9 54.7 71.7 Top2 

best r 83.3 71.4 54.7 66.6 

p 12.9 29.7 46.7 Top2 

diff r 

 

-11.9 -28.6 -16.7 

p 24.6 39.5 53 73.8 Top3 

best r 83.3 80.9 61.9 73.8 

p 14.9 28.4 49.2 Top3 

diff r 

 

-2.4 -21.4 -9.5 

p 18.6 34.8 40 61.9 Top4 

best r 80.9 71.4 57.1 61.9 

p 16.2 21.4 43.3 Top4 

diff r 

 

-9.5 -23.8 -19 

   The results of this study combined with the results of 
an earlier study [11] indicate that RETRO is a step 
forward with respect to other existing tools in terms of 
the accuracy sub-element of believability.  In this study, 
RETRO with relevance feedback and thesaurus and 
filtering achieved recall of 80.9% and precision of almost 
40%.  In a comparable but different study (different part 
of the MODIS dataset), STP achieved overall recall and 
precision of 63.4% and 38.8% and RETRO, without 
feedback or filtering, achieved overall recall and 
precision of 85.4% and 40.7% on the same dataset [11]. 
    The current study clearly points to avenues for 
improvement.  For example, modifying our methods to 
ensure that we always return at least one true link per 
requirement at iteration 0 will greatly enhance our recall 
in the process of feedback.  We also noted that the poor 
results on just a few requirements greatly influenced the 
precision measures.  By studying these “problem” 
requirements, we hope to gain insight that will allow us 
to improve the methods of RETRO. 

 

5. Related work 
   In the context of our work, there are two areas of 
interest:  requirements tracing and IR as it has been 
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Rsponsb. 
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Obj./ 

Subj. 

Study results 

Believability Items (c), 
(d) 

   

    Accuracy  recall, 

precision 

Obj. Recall of 80.9%, 
precision of 39.2% 
exceeds other tools 

    Scalability  recall, 

precision 

Obj. TBD 

    Utility  TBD Subj. TBD 

Discernability Items (c), 
(d) 

   

    Communic-
ability 

 TBD Subj. TBD 

    Good link 
rising 

 ART, 
ARF, 
DiffAR 

Obj. DiffAR grows from 
0.2 to .489-.758 at 
last iterations 

    Bad link 
sinking 

 ART, 
ARF, 
DiffAR 

Obj. DiffAR grows from 
0.2 to .489-.758 at 
last iterations 

    Cutoff  Lag Obj. Lag drops on later 
iterations, ending at 
3 or less in all but 
one test 

Endurability Items (c) - 
(e) 

TBD Subj. TBD 

 . 



applied to the problem of requirements analysis.  Each 
will be addressed below. 
   Extensive work in the area of requirements tracing has 
been performed by numerous researchers, including but 
not limited to:  Pierce [17], Hayes et al [10], Mundie and 
Hallsworth [16], Abrahams and Barkley [1], Ramesh 
[18,19], and Watkins and Neal [25] Casotto [7], Tsumaki 
and Morisawa [24], Savvidis  [21], Bohner [5], Anezin 
and Brouse [2,6], and Cleland-Huang [8].  A survey of 
work in the field of requirements tracing can be found in 
[11].  In addition, Spanoudakis [22] proposes a rule-based 
method for generation of traceability relations.  His 
approach automatically detects traceability relations 
between artifacts and object models using heuristic 
traceability rules [22].  

 
Figure 3.  Separation between average relevance 

of links and false positives. 

 

Figure 4.  Lag for TF-IDF tests. 

L ag  fo r T F -ID F

0

2

4

6

8

10

12

0 1 2 3 4 5 6 7 8

Iteration

L
ag

Top 1 Top 2 Top 3 Top 4  
 

     Recently, a number of researchers investigated the use 
of IR methods for requirements analysis. Antoniol, 
Canfora, De Lucia and Merlo [3] considered two IR 
methods, probabilistic IR and vector retrieval (tf-idf) in 
studying the traceability of requirements to code for two 
datasets. Following them, Marcus and Maletic [14] 
applied latent semantic indexing (LSI) technique to the 
same problem. While those papers studied requirements-
to-code traceability, in [11] we have addressed the 
problem of tracing requirements between different 
documents in the project document hierarchy.  

Figure 5.  Lag for thesaurus retrieval tests. 
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6. Conclusions and future work 
   RETRO was designed for the specific purpose of 
supporting the IV&V analyst in performing requirements 
tracing.  The analyst’s responsibilities for finding and 
evaluating candidate links have been facilitated by 
RETRO.  In addition, the objective sub-elements of the 
requirements of believability and discernability have been  

evaluated.  RETRO supports accuracy and the three sub-
elements of discernability of ensuring that good links rise 
to the top of candidate link lists, that bad links sink, and 
that a cutoff between good and bad links is apparent.  
Also, Science Applications International Corporation 
(SAIC), the developer of STP, is in the process of 
integrating the backend of RETRO (IR toolkit and 
feedback processing module) with the front end of STP.  
This is further evidence of RETRO’s ability to support 
IV&V analysts. 
   Future work can be separated into two directions:  
improvement of the underlying technologies (IR methods, 
etc.); and study of the analyst’s interaction with RETRO 
(subjective sub-elements of the requirements).  Technical 
enhancements include use of IR methods better suited for 
work with small datasets, implementation of additional 
feedback processing methods, implementation of more 
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intricate techniques for filtering and analysis of candidate 
link lists, and using IR techniques to predict the coverage 
or satisfaction of traced requirements by their matches.  A 
study to determine scalability of RETRO will be 
undertaken.  Finally, we will conduct a study of the work 
of analysts with RETRO.  This will be a subjective study 
to assess the utility sub-element of believability, the 
communicability sub-element of discernability, and 
endurability.  This study will also yield suggestions for 
the improvement of the RETRO GUI. 
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