
Helping Analysts Trace Requirements: An Objective Look

Jane Huffman Hayes, Alex Dekhtyar, Senthil Karthikeyan Sundaram, Sarah Howard
Computer Science Department

 University of Kentucky
hayes@cs.uky.edu, dekhtyar@cs.uky.edu, skart2@uky.edu, sehowa2@uky.edu

Abstract

This paper addresses the issues related to improving the overall
quality of the requirements tracing process for Independent
Verification and Validation analysts. The contribution of the
paper is three-fold: we define requirements for a tracing tool
based on analyst responsibilities in the tracing process; we
introduce several new measures for validating that the
requirements have been satisfied; and we present a prototype
tool that we built, RETRO (REquirements TRacing On-target),
to address these requirements. We also present the results of a
study used to assess RETRO’s support of requirements and
requirement elements that can be measured objectively.

Research

1. Introduction

 The fundamental purpose of Verification and
Validation (V&V) and Independent Verification and
Validation (IV&V) is to ensure that the right processes
have been used to build the right system. To that end, we
must verify that the approved processes and artifacts are
guiding development during each lifecycle phase as well
as validate that all requirements have been implemented
at the end of the lifecycle. A requirements traceability
matrix (RTM) is a prerequisite for both of these. Though
Computer-Aided Software Engineering tools such as
DOORS [23], RDD-100 [12], and Rational RequisitePro
[20] can assist, we have found that often developers do
not build the RTM to the proper level of detail or at all.
V&V and IV&V analysts are faced with the time
consuming, mind numbing, person-power intensive, error
prone task of “after the fact” requirements tracing to build
and maintain the RTM. Examples of V&V/IV&V
activities that can’t be undertaken without an RTM
include, but are not limited to: verification that a design
satisfies the requirements; verification that code satisfies a
design; validation that requirements have been
implemented and satisfied; criticality analysis; risk
assessment; change impact analysis; system level test
coverage analysis; regression test selection. V&V/IV&V
can be viewed as the backbone of safety-critical, mission-
critical, and Critical-Catastrophic High Risk (CCHR)
systems. Similarly, the RTM can be viewed as the
backbone of V&V/IV&V.

 Requirements tracing consists of document parsing,
candidate link generation, candidate link evaluation, and
traceability analysis. As an example, consider
requirements in a high level document such as a System
Specification being traced to elements in a lower level
document such as a Software Requirement Specification.
Generally, after the documents have been parsed and
requirements have been extracted from the two document
levels, an analyst will manually read each high level
requirement and low-level element and assign keywords
to each. A keyword-matching algorithm is then applied
to build lists of low-level elements that may potentially
satisfy a given high-level requirement. These are called
candidate links. There are two commonly accepted
metrics in evaluating candidate links: the percentage of
actual matches that are found (recall) and the percentage
of correct matches as a ratio to the total number of
candidate links returned (precision).
 In the process called candidate link evaluation, the
analyst reviews the candidate links and determines which
are actual, or true links, and which are not links (false-
positives, bad links). To achieve this, the analyst
typically examines visually the text of the requirements,
determines the meanings of the requirements, compares
the meanings and makes the decision based on whether
(s)he believes that the meanings are sufficiently close.
This determination is based on human judgment and bears
all the advantages and disadvantages that are associated
with that. After tracing is complete, the analyst generates
reports of the high level requirements that do not have
children and the low level elements that do not have
parents (traceability analysis).
 Current approaches to after-the-fact tracing have
numerous shortcomings: they require the user to perform
interactive searches for potential linking requirements or
design elements, they require the user to assign keywords
to all the elements in both document levels prior to
tracing, they return many potential or candidate links that
are not correct, they fail to return correct links, and they
do not provide support for easily retracing new versions
of documents. To ensure requirement completion and to
facilitate change impact assessment, a method for easy
“after-the-fact” requirements tracing is needed.

 Previously, we focused solely on the problem of
generating candidate links, discussed in [11].
Specifically, we showed that information retrieval (IR)
methods were effective and efficient when used to
generate candidate link lists. Our focus has now
broadened to the overall requirements tracing process.
The penultimate goal of this NASA-funded research is to
develop an efficient, effective tracing tool that makes the
best use of the analyst’s time and expertise (the ultimate
goal being the actual improvement in requirements
tracing analysis). To that end, this paper provides three
contributions: (i) we investigate the analyst
responsibilities in performing tracing; (ii) we derive
unique high-level analyst-oriented tool requirements from
these; and, (iii) we present a prototype tool, RETRO
(REquirements TRacing On-target), and evaluate it with
respect to the requirements.
 The paper is organized as follows. Section 2 presents
the requirements for an effective requirements tracing
tool. Section 3 discusses our tool and how it satisfies the
requirements of Section 2. Section 4 discusses the results
obtained from evaluation. Related work in requirements
tracing is presented in Section 5. Finally, Section 6
presents conclusions and areas for future work.

2. Requirements for an effective
requirements tracing tool

 To set the stage for our work, we must first understand
the responsibilities of an analyst who has been tasked to
perform a requirements trace. The analyst is required to:
(a) identify each requirement; (b) assign a unique
identifier to each requirement; (c) for each requirement to
be traced (say for example from a high level document to
a low level document), locate all children requirements
present in the lower level document; (d) for each low
level requirement, locate a parent requirement in the high
level document; (e) examine each high level traced
requirement and determine if it has been completely
satisfied by the low level requirements that were selected
as links; (f) prepare a report that presents the traceability
matrix (low level requirements traced to high level
requirements); and (g) prepare a summary report that
expresses the level of traceability of the document pair
(that is, what percentage of the high level requirements
were completely satisfied, what percentage of low level
documents had no parents, etc.).
 Let us next examine how automation may facilitate
these responsibilities. A tool could easily assist the
analyst in the identification and subsequent extraction and
“tagging” of requirements [(a), (b)]. Similarly, generation
of requirements traceability matrix reports and traceability
summary reports lends itself well to automation [(f), (g)].
In fact, a number of proprietary tools, such as

SuperTracePlus (STP) [10,16], and commercial tools
already address these items. The remaining items are of
greater interest and importance to researchers and
practitioners. Items (c)–(e) conceivably require the
analyst to examine every low level requirement for each
high level requirement. Even in a small document pair
that consists of 20 high level requirements and 20 low
level requirements, an analyst might have to examine 400
candidate links.
 If we build a tool to automate items (c) - (e), the analyst
will still have certain critical responsibilities. These
include evaluating candidate links; making decisions on
whether or not candidate links should be accepted or
rejected; making decisions on whether or not to look for
additional candidate links; making decisions on whether
or not a requirement has been satisfied completely by its
links; and deciding if the tracing process is complete. It is
clear that a human analyst must have the final say in all
decisions. The key to successful automation lies not in
removing the human decision-maker from the loop, but
rather, in introducing an automated agent that takes care
of the mundane, time-consuming parts of the process and
allows the analyst to concentrate on the parts that really
require human decision-making. What can be automated,
as shown in [11], is the generation of candidate links to
address items (c) and (d). With this in mind, we move to
the identification of the desirable attributes of an effective
tracing tool.
 Most research in the area of requirements tracing has
focused on models of requirements tracing [19] or has
looked at recall and precision to assess the accuracy of the
applied linking algorithms [3, 14]. To our knowledge,
there has not been work published that details the
requirements for an effective requirements tracing tool. In
addition to specifying such requirements, we provide a
validation mechanism for each requirement, and then in
Sections 3 and 4 demonstrate that our tracing tool satisfies
the requirements we have addressed to date. Note that we
have chosen to define the requirements in an informal,
textual narrative format. We do not claim that these
requirements possess the quality attributes that should be
present in formal software requirements. Rather, we offer
them as a starting point for discussion with other
researchers.
 First, we define a requirements tracing tool as a special-

purpose software that takes as input two or more
documents in the project document hierarchy (without
loss of generality we assume that individual requirements
in these documents have been successfully defined and
are easily extractable) and outputs a traceability matrix,
that is a mapping between the requirements of the input
documents. In the rest of the paper, we concentrate on
the process of forward tracing for a pair of documents ---

 .

most other requirements tracing tasks can be reduced to
this problem.
 From the perspective of a development manager or a
safety manager (in the case of a safety-critical system),
the most important attribute that a requirements tracing
tool can possess is that its final results are believable and
can be trusted. Similarly, the analysts who use the tool
should have confidence in the candidate link lists
provided by the software (addressing items (c) and (d)).
Lack of this quality in a tool might result in an analyst
wasting time by searching for additional candidate links.
We refer to this attribute as “believability,” and it
constitutes the first requirement.
Requirement 1:
Specification:
“Believability” - The requirements tracing tool shall
generate candidate links and shall solicit analyst feedback
and shall re-generate candidate links based on the
feedback such that the final trace shall very accurately
reflect the theoretical “true trace.”
Believability is constituted of three sub-requirements or
sub-elements: accuracy, scalability, and utility discussed
below.
Accuracy: The extent to which a requirements tracing
tool returns all correct links and the extent to which the
tool does not return incorrect links.
Scalability: The extent to which the requirements tracing
tool is able to achieve accuracy for “small” tracesets as
well as “large” tracesets. In this context, we define a
“small” traceset to constitute 3000 combinatorial links or
less. For example, a traceset consisting of 20 high level
requirements and 50 low level requirements would have
20 x 50 = 1000 combinatorial links. Any traceset with
more than 3000 combinatorial links is considered large.
Utility: The extent to which an analyst believes the tool
has helped to achieve good trace results. If the analyst
has (justified) confidence in the accuracy and scalability
of the tool, the tool possesses utility for the analyst. In
addition to analyst belief about accuracy and scalability,
other items can impact utility. This is a very subjective
item, and we are still in the process of elucidating its sub-
elements. Thus far we have defined Operability and
Process Enforcement. Operability is the capability of the
software product to enable the user to operate and control
it [4]. Process Enforcement refers to the tool
implementing tracing in such a way that the analyst is
guided through the process.
Validation mechanism:
The standard measures of accuracy are recall and
precision. Accuracy can be measured objectively, but
only when we have the theoretical “true trace” (i.e., the
actual traceability matrix) available. Even when we do
not have such an “answer set” a priori, we can build an
RTM using the tool, capturing the candidate links

returned at each stage. Then, we can compare the
candidate links supplied by the tool at each stage to the
final RTM (treating it as the answer set).

Precision and recall quantify accuracy in two different,
complimentary, even orthogonal, ways. In an ideal
setting, a list of candidate links is accurate when it
contains all the high—low level requirements pairs that
trace to each other and does not contain any extra pairs.
Recall measures the degree to which the first condition is
met, while precision looks at the second. We note a
certain asymmetry between the two measures. A
candidate link list with high recall and low precision
means that the analyst has to weed out the many false-
positive links from it before the requirements tracing task
is complete. On the other hand, if the same list has high
precision and low recall, the analyst would have to
examine a lot of potential links outside the list. In this
respect, high-recall, low-precision lists of links appear to
be preferable to high-precision, low recall links. That is
because humans seem to be better at determining whether
a specific pair of links from the list is a match than at
discovering new pairs of links in the document from
scratch.
 For scalability, we must examine the tool’s results for
both small and large trace sets to determine that the
accuracy has not been significantly degraded. Validation
of utility requires subjective measures and hence a
separate experimental design. In addition, we must first
establish accuracy and scalability before progressing to a
subjective study, thus ensuring that the tool performs in
such a way that there is a basis for analyst confidence.
This study is left for future research.
Discussion:
Believability is a high level, overarching requirement.
Utility is important because in any tracing exercises other
than controlled experiments, the theoretical “true trace”
will not be known. Therefore, an analyst has to decide
whether candidate links are correct or not and/or whether
to search for additional candidate links. The analyst must
feel confident that good results have been achieved by
using the tool.
 Scalability is not addressed in this paper, as we do not
currently have large trace sets with a “true trace” (See
Section 6). Accuracy is evaluated, though. Recall is
more important in tracing than precision because we do
not want analysts to have to search for additional
candidate links. We also want precision to be as high as
possible. But note that precision values can be a bit
misleading. For example, 50% precision means the
existence of one false positive for each true link, which
would be relatively easy for the analyst to deal with.
Improvement beyond 50% does not provide as much
benefit to the analyst as for example improving from 10%
to 33% (which corresponds to improving from one true

 .

link out of 10 to one true link out of three candidates).
Thus, drastic improvements in precision occur only at low
percentages. The true measure of the effectiveness of a
tracing tool lies in its ability to help an analyst find the
correct links, as easily as possible. In earlier studies [11],
we found that an analyst using the STP requirements
tracing tool actually ended up with a worse final answer
than the tool had originally proposed. If the analyst
throws away good links, recall will decrease. If the
analyst keeps bad links, precision will decrease. It is
important that the tool prompts/assists the analyst to make
the right choices (addressing items (c) and (d)). To that
end, we have requirement 2, “discernability.”
Requirement 2:
Specification:
“Discernability” The requirements tracing tool shall
generate candidate links and display their similarity
measures in such a way to make it easy for the analyst to
discern true links (from the theoretical “true trace”) from
false links (candidate links that are not really links).
Validation mechanism:
There are four aspects to this requirement. In general, we
want to ensure that the software communicates
information (such as requirement text), process flow
(such as what to do next), and results in a manner that
facilitates the tracing process. We refer to this as
communicability. In addition, we want to ensure that, as
the stages of tracing proceed, good links (true links) rise
to the top of the candidate link list and that bad links
(false links) fall to the bottom. And we want to ensure
that the similarity measures given for candidate links
reflect the “cut off” line between true and false links. To
that end, we define objective measures for all the items
above except communicability. “Good links rising” and
“bad links sinking” are measured using DiffAR and Lag,
while the existence of a cutoff is studied using different
filtering techniques on the candidate link lists. These
measures are formally defined in Section 4.
Discussion:
This requirement must be satisfied to support the
satisfaction of Requirement 1. As has been suggested
above, requirements tracing is an iterative process. An
analyst will examine a subset of the candidate links and
then determine if the links are good or not. This
information, even for a small number of candidate links,
is very valuable and should be fed back into the
algorithms to support the generation of more accurate
candidate links. If the tool does not provide the candidate
links in a manner that facilitates discernment, the analyst
will get frustrated with the tool and will not be able to
efficiently complete the task. That leads us to our final
requirement, “endurability.”

Requirement 3:

Specification:
“Endurability:” The requirements tracing tool shall
generate candidate links and shall solicit analyst feedback
and shall re-generate candidate links based on the
feedback such that the process of requirements tracing is
not arduous.
Validation mechanism:
Part of Endurability can be measured objectively by
examining the time it takes to complete a tracing project
using the tool. However, Endurability also refers to
subjective satisfaction of the analyst with the tool and
requires subjective measures and a separate experimental
design. This study is left for future research.
Discussion:
In general, requirements tracing is a very time consuming,
arduous process, even when using a tool. We strive to
decrease the tedium of the tracing experience for the
analyst (addressing items (c) - (e)). This is a subjective
item, tying in with usability. A separate study is planned
to assess analyst attitude toward our tracing tool.

3. Effective requirements tracing with
RETRO

3.1 Why use Information Retrieval?

 The problem of requirements tracing boils down to
determining, for each pair of requirements from high- and
low-level requirements documents, whether they are
“similar.” Stated as such, requirements tracing bears a
striking similarity to the standard problem of Information
Retrieval (IR): given a document collection and a query,
determine which documents from the collection are
relevant to the query. In the tracing scenario, high-level
requirements play the role of queries, while the
“document collection” is made up of low-level
requirements (these roles are switched if back-tracing is
desired). The key to understanding whether IR methods
can aid requirements tracing lies in examining the concept
of requirement “similarity.” This concept is used by the
analysts to determine the trace. We must see if
requirements similarity can be modeled, or at least
approximated, by the document relevance notions on
which different IR algorithms rely.
 The major difference in the similarity concepts used by
analysts and the measures used in IR algorithms is that
human analysts are not limited in their decisions by
purely arithmetical considerations. A human analyst can
use any tool available in her arsenal to determine the
trace, and that may include “hunches,” jumping to
conclusions, and/or ignoring assignments prescribed by
any specific methodology. Such diversity of sources for
human decision-making can be both a blessing and a bane

 .

to the requirements tracing process. On one hand, it may
lead to discovery of hard-to-find matches between the
requirements. On the other hand, human analysts do make
errors in their work. These errors may be explicit, the
analyst discards correct links and keeps incorrect ones,
and implicit, the analyst does not notice some of the true
links between the documents. Similarity (relevance)
measures computed by IR algorithms are not prone to
errors in judgment. But they may fail to yield connections
that humans might notice despite differences in text.
 Even taking this observation into account, there is still
enough evidence to suggest that IR methods are
applicable. Indeed, the actual procedures employed by an
IR algorithm in RETRO and by the analyst, working, for
example with the STP tool [10,16] are very similar. In
both cases, the lists of requirements from both document
levels are scanned and for each requirement a
representation based on its text is chosen. After that, in
both instances, matching is done automatically, and the
analyst then inspects the candidate links.

3.2 RETRO

 In contrast with such comprehensive requirements
management tools as STP [10, 16], RETRO
(REquirements TRacing On-target) is a special-purpose
tool, designed exclusively for requirements tracing. It can
be used as a standalone tool to discover traceability
matrices. It can also be used in conjunction with other
project management software: the requirements tracing
information is exported in a simple, easy-to-parse XML
form. The overall look of RETRO GUI (Win32 port) is
shown in Figure 1.

Figure 1. A screenshot of RETRO.

 At the heart of RETRO lies the IR toolbox (C++): a
collection of implementations of IR methods, adapted for
the purposes of the requirements tracing task. Methods
from this toolbox are accessed from the GUI block (Java)
to parse and analyze the incoming requirements

documents and construct relevance judgments. The
Filtering/Analysis component (C++) of RETRO takes in
the list of candidate links constructed by any of the
toolbox methods and prepares a list to be shown to the
analyst. This preparation may involve the application of
some cleaning, filtering and other techniques. The GUI of
RETRO guides the entire requirements tracing process,
from setting up a specific project, to going through the
candidate link lists. At the top of the screen, the analyst
sees the list of high level requirements (left) and the list of
current candidate links for it, with relevance judgments
(right). In the middle part of the interface, the text of the
current pair of requirements is displayed. At the bottom,
there are controls allowing the analyst to make a decision
on whether the candidate link under consideration is,
indeed, a true link. This information is accumulated and,
upon analyst request, is fed into the feedback processing
module (C++). The module takes the results of analyst
decisions and updates the discovery process consistent
with the changes. If needed, the IR method is re-run and
the requirements tracing process proceeds into the next
iteration.

3.3 Information Retrieval methods in RETRO

 The IR toolbox of RETRO implements a variety of
methods for determining requirement similarity. For this
study we have used two IR algorithms implemented
previously [11]: tf-idf vector retrieval and vector retrieval
with a simple thesaurus. To process feedback we have
used the Standard Rochio [9] method for the vector
model. The methods used are briefly described below.

3.3.1 Tf-Idf model. Standard vector model (also known
as tf-idf model) for information retrieval is defined as
follows. Let V = {k1,…,kN} be the vocabulary of a given
document collection. Then, a vector model of a document
d is a vector (w1,…,wN) of keywords weights, where wi is
computed as .)(iii idfdtfw ⋅= Here tfi(d) is the so-
called term frequency: the frequency of keyword ki in the
document d, and idfi, called inverse document frequency

is computed as

i

n

=i df2logidf , where n is the

number of documents in the document collection and dfi
is the number of documents in which keyword ki occurs.
Given a document vector d=(w1,…,wN) and a similarly
computed query vector q=(q1,…,qN) the similarity
between d and q is defined as the cosine of the angle
between the vectors:

 .

.),cos(),(

1 1

22

1

∑ ∑

∑

= =

=

⋅

⋅
==

N

i

N

i
ii

N

i
ii

qw

qw
qdqdsim

3.3.2 Tf-Idf + Simple Thesaurus. The second method
used in [11] extends tf-idf model with a simple thesaurus
of terms and key phrases. A simple thesaurus T is a set of
triples <t, t’,α>, where t and t’ are matching thesaurus
terms and α is the similarity coefficient between them.
Thesaurus terms can be either single keywords or key
phrases – sequences of two or more keywords. The
vector model is augmented to account for thesaurus
matches as follows. First, all thesaurus terms that are not
keywords (i.e., thesaurus terms that consist of more than
one keyword) are added as separate keywords to the
document collection vocabulary. Given a thesaurus
T={<ki,kj,αij>}, and document/query vectors
d=(w1,…,wN), q=(q1,…,qN), the similarity between d
and q is computed as:

.
)(

),cos(),(

1 1

22

,,1

∑ ∑

∑∑

= =

>∈<=

⋅

⋅+⋅+⋅

==
N

i

N

i
ii

Tkjki
ijjiij

N

i
ii

qw

qwqwqw
qdqdsim ijα

α

3.4 Incorporating relevance feedback

 Relevance feedback is a technique to utilize user input
to improve the performance of the retrieval algorithms.
Relevance feedback techniques for tf-idf methods adjust
the keyword weights of query vectors according to the
relevant and irrelevant documents found for them, as
supplied by the user. More formally, let q be a query
vector, and Dq be a list of document vectors returned by
some IR method given q. Further, assume that D has two
subsets: Dr of size R of documents relevant to q and Dirr
of size S of irrelevant documents that have been provided
by the user. Note that Dr and Dirr are disjoint, but do not
necessarily cover the entire set Dq. We use Standard
Rochio [9] feedback processing method:

 .

−

+= ∑∑

∈∈ irrkrj Dd
k

Dd
jnew d

s
d

r
qq γβα

Intuitively, query q is adjusted by adding to its vector a
vector consisting of the document vectors identified as
relevant, and subtracting from it the sum of all document
vectors identified as false positives. The first adjustment
is designed to potentially increase recall. The second
adjustment can potentially increase precision. The
constants α, β, γ in the formulas above can be adjusted in

order to emphasize positive or negative feedback as well
as the importance of the original query vector (in our tests
all three values were set to 1). Once the query vectors
have been recomputed, the selected IR algorithm is re-run
with the modified query vectors. This cycle can be
repeated until the user is satisfied with the results.

4. Evaluation

4.1 Study design

 The purpose of our current study is to see whether
RETRO satisfies the requirements specified in Section 2.
We notice that all three major requirements have two
components: objective, that can be measured by running
tests on the tool, and subjective, examining user
interaction with it. This study validates parts of the
requirements that can be measured objectively. A study of
the use of the tool by analysts for the purpose of
determining its usability is planned next. In particular, in
this study, we concentrate on determining the accuracy
and discernability of the results of the analysis.
 To assess the accuracy and discernability of
requirements tracing with RETRO, we performed tests on
tf-idf and thesaurus approaches, as described in Section
3.3. We used a modified dataset from [11] based on open
source NASA Moderate Resolution Imaging
Spectroradiometer (MODIS) documents [13,15]. The
dataset contains 19 high level and 49 low-level
requirements. The trace for the dataset was manually
verified. The “theoretical true trace” built for this dataset
consisted of 42 correct links.
 In the test, we have assumed that during the feedback
process, analysts provide correct information to the tool.
That is, both true links and false positives, when
discovered are marked as such. At the beginning of each
test, the traceset was loaded into RETRO and a particular
IR method (tf-idf, or thesaurus) was selected. For each
method, four different feedback strategies or behaviors,
called Top 1, Top 2, Top 3 and Top 4 were tested. The
Top i behavior meant that at each iteration, we simulated
correct analyst feedback for the top i unmarked candidate
links from the list for each high-level requirement. For
example, for each high level requirement, Top 1 behavior
examined the top candidate link suggested by the IR
procedure that had not yet been marked as true. If the link
was found in the verified trace, it was marked as true,
otherwise – as false. After repeating the Top i relevance
feedback procedure for each high level requirement, the
answers were submitted to the feedback processing
module. At this point, the Standard Rochio procedure
was used to update query (high-level requirement)
keyword weights, and to submit the new queries to the IR

 .

method. The process continued for a maximum of eight
iterations or until the results had converged.
 To check the accuracy of the results, we measured
precision and recall of the candidate link lists produced at
each iteration of the process.
 To check discernability, we devised and computed a
number of measures that allow us better insight into the
evolution of the candidate link lists provided by RETRO
from iteration to iteration. As stated in Section 2, we want
to ensure that (a) true links rise to the top of the lists, (b)
false positives sink to the bottom of the lists, and that (c) a
reasonable cut-off is possible that separates the majority
of the true links from the majority of the false positives.
The metrics measuring the degrees to which (a) and (b)
were satisfied are:
ART: Average relevance of a true link in the list;
ARF: Average relevance of a false positive in the list;
DiffAR = ART – ARF: the difference between average
relevances of true links and false positives; and
Lag: average number of false positives with higher
relevance coefficient than a true link.
To measure the ability to establish a cut-off, we have
examined a number of filtering techniques. A filtering
technique is a simple decision procedure that examines
each candidate link produced by the IR method and
decides whether to show it to the analyst. In our study, in
addition to the test run involving no filtering, we used the
following three filtering techniques:
Above 0.1: throw out a candidate link if its relevance is
below 0.1.
Within 0.5: For each high-level requirement, compare the
relevance of each candidate link with the relevance of the
top candidate link. The candidate link is retained iff its
relevance is within 0.5 of the relevance of the top link.
Top 42. For each high-level requirement i, retain the top
ki candidate links, where ki is the number of true links for
i. The filtered answer set contained 42 (or fewer)
candidate links distributed exactly as in the answer set.

4.2 Results

 We address accuracy followed by discernability. As
discussed above, recall and precision will be used to
assess accuracy. The precision and recall results obtained
in our tests are summarized in Table 1. The first column
indicates the iteration, with iteration 0 being the iteration
before the feedback. In each cell, precision is indicated
first followed by recall. For example, iteration 7, Top 3,
for Thesaurus method had precision of 24.6% and recall
of 80.9%. The maximal precision and recall achieved in
each experiment are highlighted and the maximal values
for each retrieval method are also underlined. The results

are also visualized in Figure 2, which contains the
precision/recall trajectories for all experiments, grouped
by the IR method used (top: tf-idf, bottom: simple
thesaurus).
 The importance of the results ties back to the
requirement of believability in Section 2. The candidate
link lists generated using the thesaurus method are decent,
but are greatly improved with analyst feedback. Also,
improvements in recall are seen in early iterations (as
early as iteration 3) and with the analyst only providing
feedback on the Top 2 links. We feel that these accuracy
results should also contribute to utility and endurability.
Note that our shortcoming in recall is accounted for by a
few requirements for which the IR methods did not return
any true candidate links at iteration 0. This meant that
feedback methods could not improve as they could not
acquire positive feedback information.
 Precision does not appear to improve as much. It
doubles over six or seven iterations, but on iterations 1
and 2 it decreases before starting to increase again with
iteration 3. However, precision was improved without
much impact to recall by using filtering. Table 2
summarizes the results of applying different filters to the
candidate link lists. For each filter and for each test run,
the best precision/recall pair was always achieved on the
last iteration of the experiment – a contrast with the
results without filtering. For each filter, the table also
contains the differences in percentages for recall and
precision between the list with no filtering and the list
obtained by applying the filter. As evidenced in the table,
the improvement in precision is significant for most filter-
--IR algorithm---behavior combinations. An important
observation is that removal of a candidate link from the
list by a filtering technique at some iteration does not
preclude this link from appearing again in a subsequent
iteration. What this means is that if we filtered out some
good links originally, they may reappear later with higher
similarity measures. Filtering also ties to discernability.
 Recall that we use filtering to determine if there is
eventual separation between good and bad links in the
candidate link list, or the cutoff sub-element of
discernability. Our results show that for above 0.1 in Top
42 filters such separation is eventually achieved for most
of the behaviors, as precision increases drastically while
the decrease in recall is not large. For example, using
thesaurus retrieval for Top 3 behavior and above 0.1
filtering, precision is almost 40% with recall of 80%.
 The other sub-elements of discernability examine
whether good links rise to the top of the list and bad links
sink to the bottom. Recall that we use DiffAR and Lag to
assess these. Figure 3 shows the changes in the DiffAR
metric: the difference in average relevances between the
true links (ART) and false positives (ARF) as the iterations

 .

Table 1. Results of experiments: Precision and
recall.

progress. Intuitively, the larger the difference, the more
likely it is that most of the true links will be at the top of
the candidate link lists for high-level requirements. Note
from the figure that the difference between ART and ARF
is around 0.2 at iteration 0 for both tf-idf and simple
thesaurus retrieval algorithms. At subsequent iterations
for both retrieval algorithms and all behaviors, DiffAR
grows significantly, ranging from 0.489 to 0.758 at the
last iterations.
 While DiffAR measures the quantitative separation
between true links and false positives, Lag is a measure of
qualitative separation. Lag is defined for each true link in
the list as the number of false positives for its high-level
requirement that have a higher relevance (i.e., the number
of false positives that are higher up in the list). The Lag of
a list of candidate links is the average Lag of its true links.
Note that when Lag=0, total separation of links has been
achieved: all true links appear higher up in the lists of
candidate links than all false positives.
Figures 4 and 5 show the progress of the Lag measure for
tf-idf and thesaurus retrieval tests respectively. It can be
observed that in all experiments Lag behaved in a similar
manner. For both tf-idf and thesaurus retrieval, Lag starts
at just above 6. During the first 1-2 iterations, Lag grows,

and for some experiments can go as high as 10. But at
subsequent iterations, Lag drops significantly, and in all
but one experiment, finishes under 3.

Figure 2. Recall, precision for all behaviors for
Thesaurus retrieval.

I Top 1 Top 2

 Tf-IDF Thesaurus Tf-IDF Thesaurus

0 11.3%, 57.1% 12.2%, 64.2% 11.3%, 57.1% 12.2%, 64.2%

1 8.4%, 59.5% 9.4%, 69% 6.9%, 59.5% 7.1%, 66.6%

2 7.7%, 59.5% 8.3%, 64.2% 9.2%, 69% 9.9%, 73.8%

3 9.2%, 66.6% 8.6%, 61.9% 12.2%, 73.8% 12.1%, 80.9%

4 9.9%, 71.4% 10.6%, 71.4% 15.1%, 73.8% 15.7%, 83.3%

5 12.5%, 76.1% 12.5%, 78.5% 17.9%, 71.4% 15.8%, 80.9%

6 15.3%, 76.1% 14.8%, 76.1% 20%, 69% 17.6%, 83.3%

7 16%, 71.4% 23.3%, 69% 21.9%, 80.9%

8 17.3%, 73.8% 25.6%, 69% 25%, 78.5%

I Top 3 Top 4

 Tf-IDF Thesaurus Tf-IDF Thesaurus

0 11.3%, 57.1% 12.2%, 64.2% 11.3%, 57.1% 12.2%, 64.2%

1 7.3%, 61.9% 7.8%, 66.6% 8.3%, 69% 8.6%, 76.1%

2 11.6%, 73.8% 10.6%, 83.3% 12.1%, 76.1% 12.4%, 80.9%

3 14.6%, 73.8% 13.6%, 80.9% 15.1%, 73.8% 15.3%, 80.9%

4 18.6%, 76.2% 17.4%, 83.3% 13%, 61.9% 16.7%, 78.5%

5 17.1%, 71.4% 18.1%, 83.3% 19.4%, 73.8% 18.6%, 78.5%

6 20.9%, 73.8% 20.2%, 80.9% 22.7%, 71.4%

7 21.4%, 69% 24.6%, 80.9% 22.7%, 71.4%

8 22.7%, 66.6%

Feedback: Thesaurus

60

65

70

75

80

85

0 5 10 15 20 25 30

Precision

R
ec

al
l

Top 1 Top 2

Top 3 Top 4

 Figure 3. Recall, precision for all behaviors for

TF-IDF retrieval.

Feedback: T F- I DF

50

55

60

65

70

75

80

0 5 10 15 20 25 30

P r eci si on (%)

Top 1
Top 2
Top 3
Top 4

4.3 Discussion of results

 Table 3 summarizes the contributions of the paper. It is
evident that RETRO supports the objective sub-elements
of discernability. The measures ART, ARF, and DiffAR
indicate that using the relevance feedback option of
RETRO provides the analyst with similarity measures that
clearly discern between good links and bad links. In
addition, the Lag measure shows that by the later
iterations, there are very few bad links at the top of the
candidate link lists.

 .

Table 2. Filtering summary.

Table 3. Paper Summary.

A special comment needs to be made concerning the
precision values obtained during the experiment. As
shown in Tables 2 and 3, precision in our experiments
hovered between 20 and 25% without filters and went up
to 30—40% without significant loss in recall when
filtering was used. To put these numbers into perspective,
we note, that when precision is 20% (assuming perfect
recall), for each correct link in the list of candidate links,
there are four false positives, i.e., in our case, the number
of false positives in the list would be 42*4 = 168 and the
total size of the candidate link list is 42*5 = 210. This is
about 22% of the total number of potential links (19*49 =
931). Consider, for example the Top 3 run using Above
0.1 filter (see Table 3). Here, recall of 80.9% means that
34 out of 42 links from the theoretical true trace have
been identified correctly. Precision of 39.5% means that
the total number of the candidate links in the list was 86,
i.e., about 9% of the total number (931) of potential links.
We also note that when comparing precision numbers,
their ratio is more important than their absolute
difference. It is much better to be able to raise precision
from 10% to 20% (from 420 to 210 candidate links with
perfect recall) than from 70% to 80% (from 60 to 52
candidate links with perfect recall), as the decrease in the
size of the candidate link lists is proportional to the ratio,
not the absolute different. Because of these
considerations, precision levels obtained during the
experiment are quite acceptable in practice.

 No Filter Above 0.1 Within 0.5 Top 42

p 17.3 44.4 63.6 64.1 Top 1

best r 78.5 61.9 33.3 59.5

p 27.1 46.3 46.8 Top 1

diff r

-16.6 -45.2 -19

p 25 37.9 54.7 71.7 Top2

best r 83.3 71.4 54.7 66.6

p 12.9 29.7 46.7 Top2

diff r

-11.9 -28.6 -16.7

p 24.6 39.5 53 73.8 Top3

best r 83.3 80.9 61.9 73.8

p 14.9 28.4 49.2 Top3

diff r

-2.4 -21.4 -9.5

p 18.6 34.8 40 61.9 Top4

best r 80.9 71.4 57.1 61.9

p 16.2 21.4 43.3 Top4

diff r

-9.5 -23.8 -19

 The results of this study combined with the results of
an earlier study [11] indicate that RETRO is a step
forward with respect to other existing tools in terms of
the accuracy sub-element of believability. In this study,
RETRO with relevance feedback and thesaurus and
filtering achieved recall of 80.9% and precision of almost
40%. In a comparable but different study (different part
of the MODIS dataset), STP achieved overall recall and
precision of 63.4% and 38.8% and RETRO, without
feedback or filtering, achieved overall recall and
precision of 85.4% and 40.7% on the same dataset [11].
 The current study clearly points to avenues for
improvement. For example, modifying our methods to
ensure that we always return at least one true link per
requirement at iteration 0 will greatly enhance our recall
in the process of feedback. We also noted that the poor
results on just a few requirements greatly influenced the
precision measures. By studying these “problem”
requirements, we hope to gain insight that will allow us
to improve the methods of RETRO.

5. Related work
 In the context of our work, there are two areas of
interest: requirements tracing and IR as it has been

Reqt. Analyst
Rsponsb.

Valid.
Msr.

Obj./

Subj.

Study results

Believability Items (c),
(d)

 Accuracy recall,

precision

Obj. Recall of 80.9%,
precision of 39.2%
exceeds other tools

 Scalability recall,

precision

Obj. TBD

 Utility TBD Subj. TBD

Discernability Items (c),
(d)

 Communic-
ability

 TBD Subj. TBD

 Good link
rising

 ART,
ARF,
DiffAR

Obj. DiffAR grows from
0.2 to .489-.758 at
last iterations

 Bad link
sinking

 ART,
ARF,
DiffAR

Obj. DiffAR grows from
0.2 to .489-.758 at
last iterations

 Cutoff Lag Obj. Lag drops on later
iterations, ending at
3 or less in all but
one test

Endurability Items (c) -
(e)

TBD Subj. TBD

 .

applied to the problem of requirements analysis. Each
will be addressed below.
 Extensive work in the area of requirements tracing has
been performed by numerous researchers, including but
not limited to: Pierce [17], Hayes et al [10], Mundie and
Hallsworth [16], Abrahams and Barkley [1], Ramesh
[18,19], and Watkins and Neal [25] Casotto [7], Tsumaki
and Morisawa [24], Savvidis [21], Bohner [5], Anezin
and Brouse [2,6], and Cleland-Huang [8]. A survey of
work in the field of requirements tracing can be found in
[11]. In addition, Spanoudakis [22] proposes a rule-based
method for generation of traceability relations. His
approach automatically detects traceability relations
between artifacts and object models using heuristic
traceability rules [22].

Figure 3. Separation between average relevance

of links and false positives.

Figure 4. Lag for TF-IDF tests.

L ag fo r T F -ID F

0

2

4

6

8

10

12

0 1 2 3 4 5 6 7 8

Iteration

L
ag

Top 1 Top 2 Top 3 Top 4

 Recently, a number of researchers investigated the use
of IR methods for requirements analysis. Antoniol,
Canfora, De Lucia and Merlo [3] considered two IR
methods, probabilistic IR and vector retrieval (tf-idf) in
studying the traceability of requirements to code for two
datasets. Following them, Marcus and Maletic [14]
applied latent semantic indexing (LSI) technique to the
same problem. While those papers studied requirements-
to-code traceability, in [11] we have addressed the
problem of tracing requirements between different
documents in the project document hierarchy.

Figure 5. Lag for thesaurus retrieval tests.
Lag for Thesaurus

0
1

2
3

4
5
6

7
8

9
10

0 1 2 3 4 5 6 7 8

Iteration

La
g

Top 1 Top 2 Top 3 Top 4

Separation between Relevance of Links and False Positives

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 1 2 3 4 5 6 7 8

Iteration

R
el

ev
an

ce
 D

iff
er

en
ce

TF-IDF, Top 1 Thesaurus, Top 1 TF-IDF, Top 2 Thesaurus, Top 2
TF-IDF, Top 3 Thesaurus, Top 3 TF-IDF, Top 4 Thesaurus, Top 4

6. Conclusions and future work
 RETRO was designed for the specific purpose of
supporting the IV&V analyst in performing requirements
tracing. The analyst’s responsibilities for finding and
evaluating candidate links have been facilitated by
RETRO. In addition, the objective sub-elements of the
requirements of believability and discernability have been

evaluated. RETRO supports accuracy and the three sub-
elements of discernability of ensuring that good links rise
to the top of candidate link lists, that bad links sink, and
that a cutoff between good and bad links is apparent.
Also, Science Applications International Corporation
(SAIC), the developer of STP, is in the process of
integrating the backend of RETRO (IR toolkit and
feedback processing module) with the front end of STP.
This is further evidence of RETRO’s ability to support
IV&V analysts.
 Future work can be separated into two directions:
improvement of the underlying technologies (IR methods,
etc.); and study of the analyst’s interaction with RETRO
(subjective sub-elements of the requirements). Technical
enhancements include use of IR methods better suited for
work with small datasets, implementation of additional
feedback processing methods, implementation of more

 .

intricate techniques for filtering and analysis of candidate
link lists, and using IR techniques to predict the coverage
or satisfaction of traced requirements by their matches. A
study to determine scalability of RETRO will be
undertaken. Finally, we will conduct a study of the work
of analysts with RETRO. This will be a subjective study
to assess the utility sub-element of believability, the
communicability sub-element of discernability, and
endurability. This study will also yield suggestions for
the improvement of the RETRO GUI.

7. Acknowledgments

 Our work is funded by NASA under grant NAG5-11732. Our
thanks to Ken McGill, Tim Menzies, Stephanie Ferguson, Pete
Cerna, Mike Norris, Bill Gerstenmaier, Bill Panter, the
International Space Station project, Mike Chapman and the
Metrics Data Program, and the MODIS project for maintaining
their website that provides such useful data. We thank Hua
Shao and James Osborne for assistance with the tf-idf
algorithm. We thank Inies Chemmannoor, Ganapathy
Chidambaram, Ramkumar Singh S, and Rijo Jose Thozhal for
their assistance.

8. References

[1] Abrahams, M. and Barkley, J., "RTL Verification

Strategies," IEEE WESCON/98, 15 - 17 September 1998,
pp. 130-134.

[2] Anezin, D., "Process and Methods for Requirements
Tracing (Software Development Life Cycle)," Dissertation,
George Mason University, 1994.

[3] Antoniol, G., Canfora, G., Casazza, G., De Lucia, A., and
Merlo, E. Recovering Traceability Links between Code and
Documentation. IEEE Transactions on Software
Engineering, Volume 28, No. 10, October 2002, 970-983.

[4] Bohner, S., "A Graph Traceability Approach for Software
Change Impact Analysis," Dissertation, George Mason
University, 1995.

[5] Avouris, N.M. “An Introduction to Software Usability,”
Workshop on Software Usability, University of Patras,
2001.

[6] Brouse, P., "A Process for Use of Multimedia Information
in Requirements Identification and Traceability,"
Dissertation, George Mason University, 1992.

[7] Casotto, A.. Run-time requirement tracing, Proceedings of
the IEEE/ACM International Conference on Computer-
aided Design, Santa Clara, CA, 1993.

[8] Cleland-Huang, J., Chang, C.K., Sethi, G., Javvaji, K.; Hu,
H., Xia, J. (2002) Automating speculative queries through
event-based requirements traceability. Proceedings of the
IEEE Joint International Requirements Engineering
Conference (RE'02), Essex, Germany, 9-13 September,
2002, pages: 289- 296.

[9] Baeza-Yates, R. and Ribeiro-Neto, B. Modern Information
Retrieval, Addison-Wesley, 1999.

[10] Hayes, J. Huffman. Risk reduction through requirements
tracing. In The Conference Proceedings of Software
Quality Week 1990, San Francisco, California, May 1990.

[11] Hayes, J. Huffman; Dekhtyar, A. Osbourne, J. “Improving
Requirements Tracing via Information Retrieval,” ,” in
Proceedings of the International Conference on
Requirements Engineering (RE), Monterey, California,
September 2003.

[12] Holagent Corporation product RDD-100,
http://www.holagent.com/new/products/modules.html

[13] Level 1A (L1A) and Geolocation Processing Software
Requirements Specification, SDST-059A, GSFC SBRS,
September 11, 1997.

[14] Marcus, A.; Maletic, J. “Recovering Documentation-to-
Source Code Traceability Links using Latent Semantic
Indexing,” Proceedings of the Twenty-Fifth International
Conference on Software Engineering 2003, Portland,
Oregon, 3 – 10 May 2003, pp. 125 – 135.

[15] MODIS Science Data Processing Software Requirements
Specification Version 2, SDST-089, GSFC SBRS,
November 10, 1997.

[16] Mundie, T. and Hallsworth, F. Requirements analysis
using SuperTrace PC. In Proceedings of theAmerican
Society of Mechanical Engineers (ASME) for the
Computers in Engineering Symposium at the Energy &
Environmental Expo 1995, Houston, Texas.

[17] Pierce, R. A requirements tracing tool, Proceedings of the
Software Quality Assurance Workshop on Functional and
Performance Issues, 1978.

[18] Ramesh, B., "Factors Influencing Requirements
Traceability Practice," Communications of the ACM,
December 1998, Volume 41, No. 12, pp. 37-44.

[19] Ramesh, B.; Jarke, M. Toward reference models for
requirements traceability; IEEE Transactions on Software
Engineering, Volume 27, Issue 1, January 2001,
page(s): 58 –93.

[20] Rational RequisitePro,
http://www.rational.com/products/reqpro/index.jsp

[21] Savvidis, I. "A Multistrategy Framework for Analyzing
System Requirements (Software Development),"
Dissertation, George Mason University, 1995.

[22] Spanoudakis, G. “Plausible and adaptive requirement
traceability structures,” Proceedings of the 14th
international conference on Software engineering and
knowledge engineering (SEKE), 2002, Ischia, Italy , pp.
135 – 142.

[23] Telelogic product DOORS,
http://www.telelogic.com/products/doorsers/doors/index.cfm

[24] Tsumaki, T. and Morisawa, Y. "A Framework of
Requirements Tracing using UML," Proceedings of the
Seventh Asia-Pacific Software Engineering Conference
2000, 5 - 8 December 2000, pp. 206 - 213.

[25] Watkins, R, Neal, M. "Why and How of Requirements
Tracing," IEEE Software, Vol. 11, No.4, 1994, pp.104-106.

 .

	Introduction
	Requirements for an effective requirements tracing tool
	Effective requirements tracing with RETRO
	Why use Information Retrieval?
	RETRO
	Incorporating relevance feedback

	Evaluation
	Above 0.1: throw out a candidate link if its relevance is below 0.1.
	Results

	Related work
	Conclusions and future work
	Acknowledgments
	References

