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Abstract—Making decisions among a set of alternative system 

designs is an essential activity of requirements engineering. It 

involves evaluating how well each alternative satisfies the 

stakeholders’ goals and selecting one alternative that achieves 

some optimal tradeoffs between possibly conflicting goals. 

Quantitative goal models support such activities by describing 

how alternative system designs – expressed as alternative goal 

refinements and responsibility assignments – impact on the 

levels of goal satisfaction specified in terms of measurable 

objective functions. Analyzing large numbers of alternative 

designs in such models is an expensive activity for which no 

dedicated tool support is currently available. This paper takes 

a first step towards providing such support by presenting 

automated techniques for (i) simulating quantitative goal 

models so as to estimate the levels of goal satisfaction 

contributed by alternative system designs and (ii) optimising 

the system design by applying a multi-objective optimisation 

algorithm to search through the design space. These techniques 

are presented and validated using a quantitative goal model for 

a well-known ambulance service system. 

Keywords — requirements simulation and optimisation; 

quality requirements; goal-oriented requirements engineering; 

quantitative modelling; search-based software engineering 

I.  INTRODUCTION 

Consider a development project to improve the efficiency 
of an existing system. Stakeholders and designers have 
identified several alternative ways that improvements might 
be achieved and you have to guide them in making the best 
decisions about which of these alternatives ought to be 
selected for implementation. Imagine, for example, an 
ambulance dispatching system for the London Ambulance 
Service (LAS) [1][2]. This system must ensure that 
ambulances respond to reported incidents across the city as 
swiftly as possible. Alternative options for improving the 
system include improving some of the call-taking features of 
the software so that details about reported incidents can be 
encoded faster and more accurately; replacing ambulance 
radios with mobile data terminals so that more information 
can be communicated directly to the ambulance crews; and 
improving the speed and accuracy of ambulance-allocation 
decisions by automating all or part of the allocation process. 
These alternatives have different costs and different impacts 
on the system goals. A key goal in this example is to 
maximize the 14 minute response rate, that is, the percentage 
of incidents for which the first ambulance arrives at the 
incident scene within 14 minutes of the first call. This goal 

comes from a 1992 UK Government standard requiring the 
14 minute response rate to be above or equal to 95 %. Being 
able to estimate how much each alternative option would 
contribute to improving the 14 minute response rate would 
help decision makers make informed decisions between the 
alternative options. 

In previous work, we have presented a quantitative goal 
modeling framework for specifying goals with measurable 
objective functions and modeling the impact that alternative 
system designs have on these goals [3]. This framework 
extends the KAOS goal modeling language [4] with a 
probabilistic layer allowing one to specify and reason about 
measurable quantitative requirements in the spirit of the 
VOLERE [5] and Planguage methods [6]. The work 
presented there motivates the need for quantitative goal 
models based on measurable goal definitions, defines the 
language‟s formal semantics, and presents a set of heuristics 
for the systematic elaboration of such models. It does not 
consider how to automate the model analysis. It gives an 
illustration of how quantitative goal models can be used to 
compare three alternative system designs for an ambulance 
despatching system. This analysis was done following an ad-
hoc process using a mix of analytical and numerical 
methods. The process used there is error-prone, labour 
intensive, and does not scale to very large numbers of design 
alternatives. Our objective in this paper is to address these 
limitations by presenting automated techniques for 
evaluating large numbers of design alternatives and 
identifying the optimal ones among them.  

The paper presents a simulation and optimisation 
framework for evaluating the impact of alternative system 
designs on high level goals and for finding optimal design 
options among the alternatives. Given a quantitative goal 
model, our technique generates a stochastic simulation 
model able to simulate the whole range of alternative designs 
in the goal model. The simulation takes as input a particular 
set of design choices and a sample size to be simulated (for 
example the number of incidents to be simulated), it then 
uses the probability distributions and equations of the 
quantitative goal model to simulate the behaviour of that 
particular design and compute the levels of goal satisfaction 
obtained for that simulation. This simulation model is then 
used by a multi-objective optimization component that 
searches through the design space in order to identify the 
optimal design choices.  

The techniques are illustrated on the London Ambulance 
Service goal model for which a prototype simulation model – 
implemented in Matlab – is generated manually (but 



 

systematically) from the goal model and the NSGAII genetic 
algorithm is used to search through the design space. The 
case study shows the potential of simulation and 
optimisation techniques in providing sound decision making 
tools for requirements engineering and highlights the need 
for improved optimization algorithms for exploring 
alternative design options in such goal models. 

II. BACKGROUND 

A. Goal-Oriented RE with KAOS 

Goal-oriented requirements engineering is a popular 
paradigm for eliciting, modelling, and reasoning about 
system requirements [4]. Goals are prescriptive statements of 
intent that the system should satisfy through the cooperation 
of its agents. Agents are active system components playing 
specific roles in the goals satisfaction. Agents include human 
agents, software components, and hardware devices such as 
sensors and actuators. Goals can be AND/OR refined into 
subgoals. An AND-refinement relates a parent goal to a set of 
subgoals; it means that the satisfaction of all subgoals 
ensures the satisfaction of the parent goal in the application 
domain. An OR-refinement relates a parent goal to a set of 
alternative AND-refinements; it means that any one of the 
alternative AND-refinements is sufficient for satisfying the 
parent goal. OR-refinements are used to model alternative 
design choices for satisfying the parent goal. Goals are 
AND-refined into subgoals until the resulting subgoals can 
be assigned as the responsibility of single agents. Assigning 
a goal to an agent means that the agent is the only one 
required to restrict its behaviour to ensure the goal‟s 
satisfaction. OR-responsibility assignments are used to 
model alternative assignment of goals to agents. These 
correspond to alternative design choices, for example of 
assigning a goal to a human or automated agent. 

Figure 1 shows portion of a goal model built for the 
London Ambulance Service (LAS) case study [3], which was 
based on the report from the inquiry following a major 
system failure [1]. The top-level goal in this figure, Achieve 

[Ambulance Intervention], requires that a first ambulance arrives 
at the incident scene within 14 minutes after the first call. 

Goal specifications include a natural language definition and 
an optional formal specification in Linear Temporal Logic. 
The goal Achieve [Ambulance Intervention] is AND-refined into 
the subgoals Achieve [Ambulance Mobilisation] and Achieve 

[Mobilised Ambulance Intervention]. The goal Achieve [Ambulance 

Mobilised] requires that an ambulance be mobilised to an 
incident within 3 minutes after the first call and that the 
mobilised ambulance is less than 11 minutes away from the 
incident. The goal Achieve [Mobilised Ambulance Intervention] 
requires that once an ambulance is mobilised for an incident 
location it will reach that location without delay.  

Options correspond to alternative choices at decision 
points in the goal model, where a decision point is either an 
OR refinement or an OR responsibility assignment (other 
decision points related to conflict and obstacle resolutions 
[2][7] are not considered in this paper). Options correspond 
to the system reference attribute attached to goal refinements, 
responsibility assignments, and obstacle resolutions in the 
KAOS meta-model [4]. To save space, in Figure 1 we show 
the options without showing the alternative goal refinements 
or responsibility assignments that define them. In this model, 
the goal Achieve [Incident Form Encoded] has four alternative 
options for its satisfaction. The first corresponds to the 
current paper based-system (in 1992), the second 
corresponds to using an computer-based call tacking system, 
the third consists in using an automated system for locating 
calls, and the fourth consists in using a computer-based call 
taking system with automated call location. Options for 
satisfying the goal Achieve [Ambulance Allocated] are to use the 
current radio-based system, or to use mobile data terminals 
on board of ambulances of which two different systems 
could be chosen, system A or B. 

B. Quantitative Goal Models 

We have previously developed an extension of the 
KAOS framework for reasoning about alternative design 
choices based on measurable, domain-specific criteria [3]. In 
this framework, the degrees of satisfaction for a goal are 
specified using objective functions defined in terms of 
quality variables, which are random variables (i.e. functions 
over probability spaces). For example, we can specify the 
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Figure 1. Partial goal model for the LAS system showing decision points for alternative system designs 



 

goal Achieve [Ambulance Intervention] as follows:  

Goal Achieve [Ambulance Intervention] 

Definition 

For every urgent call reporting an incident, there should be an 
ambulance at the incident scene within 14 minutes after receiving the 
first call. 

Formal Definition ( i:Incident, c: UrgentCall)   

Reporting(c, i)  ◊≤14mins ( a:Ambulance) Intervention(a,i) 

Objective Functions 

14MinResponseRate = MAX [ P(ResponseTime 14 mins) ] 
8MinResponseRate = MAX [ P(ResponseTime 8 mins) ] 

Quality Variable 

ResponseTime: Incident -> Time 
{def: the duration in seconds between the start of the first call 
reporting the incident and the arrival of the first ambulance at the 
incident scene.} 

The goal‟s definition and formal definition define what it 
means for the goal to be satisfied in an absolute sense; the 
goal semantic is the set of system behaviours – i.e. sequences 
of system states – that satisfy the goal‟s formal definition. 
The goal objective functions define the measures to be used 
for assessing partial levels of goal satisfaction. Objective 
functions are defined in terms of quality variables that 
correspond to domain phenomena related to the goal‟s 
definition. In this example, the quality variable is the 
incident response time, and the objective functions are the 
probability that the response time is less than 14 minutes and 
8 minutes, respectively. In this example, both objective 
functions have to be maximized. For the actual LAS system, 
the target values for these objective functions are 
Government standards that in 1992 were set at 95% and 
50%, respectively. The specification of adequate objective 
functions is one of the most critical steps of a system design. 
Designing an ambulance system to optimize these objective 
functions is likely to yield a very different system than one 
whose only objective function would be to minimize the 
mean response time for example. 

The quality variables associated with a goal can be 
related to quality variables associated with its subgoals 
through domain-specific refinement equations. For example, 
the quality variable response time is related to the quality 
variables MobilisationTime, MobilisationDistance, and 

AmbulanceDelay of the goals Achieve [Ambulance Mobilisation] 

and Achieve [Mobilised Ambulance Intervention] through the 
following refinement equations: 

ResponseTime =  

        MobilisationTime + MobilisationDistance + AmbulanceDelay. 

The variable MobilisationTime denotes the time it takes to 
mobilize the first ambulance, MobilisationDistance denotes the 
time-distance between the mobilised ambulance and the 
incident location (e.g. the ambulance is 11 minutes away 
from the incident), and AmbulanceDelay denotes the difference 
between the mobilisation distance and the actual time taken 
by the ambulance to reach the incident location. Figure 2 
shows the goals‟ quality variables for the portion of the goal 
model in Figure 1. 

Quality variables can be of any type, they are not 
restricted to a time domain. For example, in the LAS model 
the goal Achieve [Ambulance Intervention] has an additional 
Boolean quality variable 

IncidentDropped: Incident -> Boolean 

that is true of reported incidents for which no ambulance 
ever arrives at the incident scene [3]. The associated 
objective (not shown in the example above) is to minimize 
the probability that an incident is dropped. This quality 
variable can be related to quality variables of subgoals 
through the following equation involving other Boolean 
quality variables: 

IncidentDropped =  
NoAmbulanceMobilisedWrongMobilisationDestination 
AmbulanceInterventionFailure. 

Goals quality variables are thereby recursively related to 
other quality variables along the goal refinement links until 
reaching goals assigned to the responsibility of single agents.  
Quality variables attached to a goal assigned to a single agent 
can be further related to quality variables attached to 
obstacles to that goal. An obstacle to a goal is a condition 
that violates the goal [2]. For example, AmbulanceDelay could 
be a function of the quality variables AmbulanceBreakdown, 
TrafficLevel, and AmbluanceLost attached to obstacles to the 
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Figure 2. Quality variables for the LAS goal model 



 

goal Achieve [Mobilized Ambulance Intervention] [3]. The 
handling of quality variables and refinement equations on 
obstacles is the same as for quality variables attached to 
goals and therefore does not require a special treatment when 
simulating the model.  

Quantitative goal models can be used to evaluate the 
expected value for the goals‟ objective functions in 
alternative system designs. This evaluation requires an 
estimation of the probability distribution function for each 
leaf quality variable in the model. For example, the variable 
CallTakingTime – denoting the time it takes to fill in the 
incident form after the start of the first call– could be 
characterized as having an exponential distribution whose 
mean varies from 60 seconds to 30 seconds depending on 
which option is selected for satisfying the goal: 

CallTakingTime =  
Exp(60) if Option 1.1 is selected 
Exp(40)  if Option 1.2 is selected 
Exp(45)  if Option 1.3 is selected 
Exp(30)  if Option 1.4 is selected 

Estimating the probability distributions of leaf quality 
variables can be done in various ways; it can for example be 
inferred from statistical data about the existing system or be 
constructed from expert judgement about the future system. 
An important distinction is to be made between descriptive, 
predictive, and prescriptive probability distributions. A 
descriptive distribution is one that describes characteristics 
of the existing system, a predictive distribution is one that 
predicts some characteristics for the future system, and a 
prescriptive distribution is one that prescribes some 
characteristics for the future system. For example, the 
probability distribution for CallTakingTime is descriptive for 
Option 1.1 because it describes how long it takes to write 
down call details on incident form in the existing paper-
based system. It is predictive for Option 1.2 because it 
predicts how long it will take to call takers to encode 
incident details using an existing computer-based call 
tacking system. It is prescriptive for Option 1.3 because it 
prescribes how the automated call location feature should 
contribute to reducing the call taking time. The probability 
distribution for Option 1.2 could also be seen as prescriptive 
if it is meant to impose a requirement to be met by the 
designers of the computer-based call taking system. 

Unlike probabilistic transition systems and model 
checkers [8], the model is not restricted to random variables 
with exponential distributions. Any distribution function can 
be used. For example, the quality variable AmbulanceDelay 
could be characterized as having a normal distribution with a 
mean of 0 and standard deviation of 120 seconds: 
AmbulanceDelay = Normal(0, 120). 

Computing objective functions from leaf quality 
variables and refinement equations rely on the assumption 
that the leaf quality variables are statistically independent. 
This assumption –also used in quantitative fault trees and 
Bayesian networks– is required to ensure correctness of the 
computations (it allows the probability of two events – e.g. 
that the call taking time for an incident is less than 1 minute 
and its ambulance allocation time less than 2 minutes – to be 
computed as the product of the probability of each event). 

The stochastic simulation process we present in the 
following section relies on this assumption because it 
generates simulated values for each quality variable 
according to its probability distribution function 
independently from other variables simulations. If the system 
analysts suspect that the independence assumption between 
leaf quality variables does not hold, they have to elaborate 
the model by refining the quality variables further until 
reaching leaf quality variables that can be considered to be 
independent. 

Systematic techniques for elaborating quantitative goal 
models have been proposed [3]. These include heuristics for 
deriving a goal's quality variables and objective functions 
from the goal's definition, patterns of refinement equations, 
and guidance on how to reach a set of independent leaf 
quality variables.  

III. EVALUATING ALTERNATIVES WITH STOCHASTIC 

SIMULATION 

The problem we address is how to evaluate and compare 
degrees of goal satisfaction contributed by alternative system 
designs. In the context of our quantitative goal model, the 
problem is thus how to compute the objective functions for 
the higher-level goals given the refinement equations and 
estimates of the probability distributions for all leaf quality 
variables. The problem is particularly complex because our 
models allows any refinement equations (they are not 
restricted to linear functions such as weighted sums) and leaf 
quality variables can have any distributions (they are not 
restricted to a single distribution type).  

Our previous approach for computing objective functions 
involved transforming the quality variable refinement 
equations into equations relating the quality variables 
probability density functions, which are integral equations 
that we resolved using numerical techniques [3]. This 
process is labour-intensive, error-prone, and does not scale to 
the evaluation of large number of alternatives.  

The approach described in this paper overcomes these 
limitations by generating a stochastic simulation model from 
the quantitative goal model. The stochastic simulation model 
simulates each alternative system design by generating 
sample values for each leaf quality variables according to its 
probability distribution in a chosen design option and 
computes the objective functions values obtained in that 
simulation. An additional benefit of this approach is that it 
generates simulated values for all quality variables that could 
then be analysed to gain further insights in the system 
behaviour than just computing its objective functions.  

A. Simulating Goal Models 

Our simulation process can be described as the function 

SimulateGoal :G × N→ Gsim 

that takes as input a goal G for which an objective function is 
defined and a parameter N specifying a sample size for the 
quality variables in the model, and generates a structure Gsim 
consisting of a goal graph rooted at G (i.e. G and all 
transitively related sub-goals) in which approximate values 
have been computed for all objective functions and 



 

simulated values generated for all quality variables. If the 
model contains quality variables with different domains, 
separate sample sizes can be specified for each. 

For example, we might simulate our top-level goal 
Achieve [Ambulance Intervention] with a sample size of 1000, i.e. 
we would simulate the goal for 1000 incidents since this is 
the domain for the quality variables of the model (e.g. 
ResponseTime: Incident → Time). The procedure call 

SimulateGoal(Ambulance Intervention, 1000) 

then generates a goal graph rooted at this top-level goal for 
which we have computed 

 a vector of 1000 simulated values for each quality 
variable in this goal graph, e.g. ResponseTime = [v1, 
v2, ..., v1000] 

 simulated values for the goal's two objective 
functions computed using the 1000 simulated 
values for ResponseTime. 

Our simulation algorithm computes the quality variables 
and objective functions simulated values by traversing the 
goal graph recursively from the top-level goals. Since a goal 
model is a directed acyclic graph, we must ensure that a goal 
is not simulated twice for the same instances in the quality 
variable sample space (e.g. we must avoid generating two 
different vectors of simulated values of CallTakingTime for the 
same incidents). To achieve this, the algorithm stores the 
results of goals that have already been simulated in a data 
structure Gsim. The procedure for simulating a goal G is 
composed of the following steps: 

1. If G has subgoals (or obstacles), simulate each 
subgoal (or obstacle) that has not already been 
simulated, i.e. that is not already in Gsim. 

2. For each leaf quality variable in G (if any), generate 
its vector of N simulated values using its probability 
distribution in the simulated design option. 

3. For each non-leaf quality variable in G (if any), 
compute its vector of sample values using its 
refinement equation and the simulated values for 
the quality variables involved in that equation.  

4. If the goal has objective functions, compute the 
objective functions simulated values from the 
quality variables simulated values. 

5. Add the goal and its simulated quality variables and 
objective functions to Gsim. 

Our simulation model for the LAS quantitative goal 
model is implemented in Matlab. We use Matlab built-in 
functions to generate sample values for all leaf quality 
variables. For example, the Matlab command 

CallTakingTime = exprnd(meanCallTakingTime, 1, N) 

generates a vector CallTakingTime of N random numbers from 
an exponential distribution with mean of meanCallTakingTime. 
Each value in this vector represents the call taking time for 
one particular incident. The quality variables refinement 
equations are then applied to the vectors of sample quality 
variable values using the usual element-wise vector 
operations. For example, the equation  

ResponseTime =  
            MobilisationTime + MobilisationDistance + AmbulanceDelay 

generates an N-dimension vector obtained from the element-
wise addition of the three vectors in the right hand side of the 
equation. Simulated values for the goals‟ objective functions 
are computed from the simulated vectors for the goal‟s 
quality variables using the frequentist interpretation of 
probabilities. For example, the 8 minutes and 14 minutes 
response rate defined in Section II are computed as the 
percentage of simulated response time that is below 8 and 14 
minutes, respectively: 

8MinResponseRate = sum(ResponseTime<= 8 min)/N 
14MinResponseRate = sum(ResponseTime<=14 min)/N 

where N is the number of simulated incidents. 
In addition to the LAS simulation, we have also 

developed a simulation model for a financial fraud detection 
system based on a quantitative goal model for that system 
[9][10]. This simulation is implemented in R, a mathematical 
programming environment that provides the same high-level 
mechanisms for random variable generation and vector 
manipulation as Matlab.  

Using these high-level mathematical environments 
allowed us to build quick prototypes for the simulation 
models and to easily connect these models to existing 
optimization algorithms as will be described in Section IV. 
The goal-based, recursive structure of our simulation 
technique could equally be implemented in faster, procedural 
programming languages. Ideally, future work should 
automate the generation of the simulation models from 
quantitative goal models. 

B. An Example Simulation  

As an example let us compute approximate values for the 
objective functions 8MinResponseRate and 14MinResponseRate 
for the current system in Figure 1, i.e. the system defined by 
selecting options 1.1., 2.1, 3.1, and 4.1. In addition to 
providing a benchmark against which to judge potential 
improvement, simulating the existing system design can be a 
useful exercise in practice since it may be possible to 
compare the approximate values computed for the objective 
functions with actual values measured for the real system, 
thereby validating the quantitative goal model. We can also 
assume that good estimates of the expected values and 
probability distributions for the quality variables in question 
are known for the current system. Let us assume the 
estimated distribution functions for the leaf quality variables 
in Figure 1 are defined as follows (time is measured in 
seconds):  

CallTakingTime = Exp(60) 
AmbulanceDelay = Normal(0, 120)  
AllocationTime = Exp(60) 
MobilisationCommunicationTime = Exp(60) 

The quality variable DistanceAllocatedAmbulance, denoting 
the time-distance between the incident location and the 
ambulance allocated to the incident, depends on the quality 
variables denoting the number of ambulances, the frequency 
of incidents, the city size, the error in ambulance location 
and availability information, and error in the allocation 
decision process attached to lower-level goals and domain 
properties not shown in Figure 1. 



 

For this example, a simulation run with 1000 incidents 
computes the expected values for the 8 and 14 minutes 
response rate to be 61% and 97%, respectively. These rates 
are both above the government standard. However, we may 
still be interested in finding improvements. Running the 
simulation again but this time selecting the second option for 
Achieve [Ambulance Allocated Based On Incident Form], which 
allocates responsibility for the goal to a software agent 
instead of a human operator, giving an estimated mean 
Allocation Decision Time of only 5 seconds, we see an improved 
approximate value for 8MinReponseRateof 73%. This 
simulation returns a result in about a second on an average 
desktop machine. 

C. Setting the simulation size to a confidence interval 

Because our model involves probabilistic variables, the 
simulation of a particular system design is non-deterministic 
and the simulated value for its goals‟ objective functions 
may not correspond to their exact values for the model. The 
deviation between an objective function simulated value and 
its exact value will decrease as the size of the sample space 
used during the simulation increases. This deviation can be 
assessed using the common statistical measures of standard 
error and confidence interval. We have used such measures 
to allow goal simulation to incrementally increase the sample 
size to be simulated until reaching a confidence interval of 
95% (or some other desired target) on all top-level objective 
functions.  

IV. SEARCHING FOR OPTIMAL TRADEOFFS IN MULTI-

OBJECTIVE DESIGNS 

We have seen how stochastic simulation can be used to 
evaluate alternative system designs. However, by itself, the 
simulation-based approach we have described still requires 
comparisons between distinct design choices to be assessed 
manually. For example, simulations could be run 
individually for two separate designs and the results 
compared by hand, with the engineer opting for the design 
that gives the better degrees of satisfaction across the 
important goals of interest. But teasing out the subtleties of 
different tradeoffs between multiple competing goals is not 
straightforward.  More importantly the design space of 
distinct alternative system designs grows exponentially with 
the number of individual design choices. For example, if we 
have 2 goals each with 3 possible OR-refinements we have 9 
potential system designs to evaluate, and if we add just 2 
more goals, each with 4 alternative refinements, we have 144 
designs (assuming these alternatives are neither mutually 
inconsistent nor mutually dependent, which would constrain 
the design space somewhat). Techniques are therefore 
needed to guide the evaluation and comparison of large 
numbers of alternative system designs in goal models.  

A. Multi-Objective Optimisation Problems 

The problem to be solved is a multi-objective 
optimization problem because design choices must take into 
account multiple stakeholders‟ goals that are not directly 
comparable one to another. For example, for the LAS, the 
objectives of maximizing the 14 minutes and 8 minutes 

response rates must be balanced against an objective of 
minimising costs. For a plastic card fraud detection system, 
the objective of minimizing undetected frauds must be 
balanced against the objective of minimizing false alerts that 
result in cards being blocked unnecessarily. These two 
objectives are themselves related to conflicting goals at a 
higher-level in the goal model such as minimizing financial 
loss due to fraud, minimizing card holders‟ inconvenience, 
and minimizing fraud investigation costs. In general, there is 
not a single design that is better than all others for all 
objectives simultaneously. 

Formally, the problem consists in selecting options for all 
decision points in the goal model, i.e. for all alternative goal 
refinements and responsibility assignments, so as to optimize 
the set of objective functions {OF1, ..., OFn} attached to the 
models‟ top-level goals. If there are M decision points, a 
particular system design can be represented as a vector d = 

[d1, ..., dM] where di represents the choice made for decision 
point i. The objective function OFi for a particular system 
design d = [d1, ..., dm], noted OFi(d), is computed by simulating 
the goal model for this set of design options. A system 
design d is said to dominate a system design d’ if and only if 
it performs better than d’ for at least one objective function 
and performs as least as well as d’ for all other objective 
functions: 

OFi(d) >OFi(d')   for some i in 1..n 

OFi(d) ≥OFi(d')  for all i in 1..n. 

(This formulation assumes that all objective functions 
have to be maximized. An objective function that has to be 
minimized can always be transformed into one that has to be 
maximised by reversing its sign.) A system design is said to 
be Pareto-optimal if it is not dominated by any other system 
design. The set of Pareto-optimal solutions is therefore 
composed of all “best” designs from the goal model. 
Allowing decision makers to explore this set helps them to 
identify what can be achieved and to select one design in that 
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set that corresponds to an appropriate trade-off between the 
multiple objectives. 

One approach to solving a multi-objective optimization 
problem is to transform it into a single objective problem by 
aggregating all objectives into a single one defined as the 
weighted sum of the individual objectives. This approach, 
however, requires the a priori elicitation of the objective 
functions weights –which are subjective and without 
physical interpretation in the application domain– and 
produces as output a single element in the set of Pareto-
optimal solutions instead of allowing decision makers to 
explore the full set of such solutions [11]. 

B. Multi-Objective Optimization Algorithms 

Our aim in this section is to explore the use of out-of-the-
box multi-objective optimization techniques for exploring 
alternative system designs in goal models. Standard 
techniques such as Integer Linear Programming will in 
general not be applicable because objective functions and 
quality variable refinement equations are not restricted to 
linear functions. A suitable approach in our context is to use 
meta-heuristic search algorithms to let the objective 
functions guide the search through the design space. Such 
algorithms are used increasingly to solve optimization 
problems in different areas of software engineering [11].  For 
the LAS case study, we have used NSGA-II [12] which is a 
state-of-the-art genetic algorithm that has an implementation 
in Matlab‟s Global Optimization Toolbox. We here briefly 
sketch the basic mechanisms of such an algorithm necessary 
to understand how to map the search for optimal design 
decisions in goal models to an adequate representation 
allowing such algorithm to be used. 

Genetic search-based algorithms converge on a solution 
over the course of a number of iterations, known as 
generations. In our case, a solution would be a set of Pareto 
optimal designs. Each generation a candidate approximation 
of the real solution – known as that generation‟s population – 
is selected and each member of the population – known as a 
chromosome – is evaluated via a fitness function, which 
ranks the chromosomes according to given criteria. For 
multi-objective optimisation we would rank highly those 
chromosomes that represent a value that is dominated by no 
(or relatively few) others in the population. We evaluate 
alternative chromosomes (design choices) based on the 
approximate values they contribute to objective functions.  
The next generation‟s population is then selected from the 
highest ranking chromosomes of the current population by a 
customisable process known as crossover, which splices 
parts of two parent chromosomes together to create a new 
one that inherits characteristics of both parents. Typically, a 
certain number of the highest ranking chromosomes will also 
survive through to the next generation. The key feature of 
this algorithm is that exploration of the search space is 
guided by the fitness function since it determines the 
direction in which the search proceeds by selecting the best 
candidates for crossover.  

C. Encoding the Optimisation Problem for Design Choices 

Genetic algorithms like NSGAII represent chromosomes 
using a binary representation, i.e. each chromosome is 
represented as a vector of bits. In order to use such algorithm 
to explore alternative design choices in goal models, we 
therefore need to define a mapping from alternative system 
designs in the goal model to a binary representation. Figure 4 
illustrates this mapping for a small general example. Here the 
goal model has five decision points which we encode with a 
five-bit vector in which 1 (resp. 0) indicates that the design 
option represented by that bit is selected (resp. not selected). 
Further constraints on the selection of design choices, such 
as exclusive alternatives or mutual dependencies between 
design options are captured by logical constraints over these 
bit vectors. For example, in each system design a goal can be 
assigned as the responsibility of at most one agent. In our 
example, this means that bits 3 to 5 in a chromosome are 
mutually exclusive.  

When defining the crossover function, we need to ensure 
that the crossover between two bit vectors results in a bit 
vector that corresponds to a valid set of design choices in the 
goal model, i.e. that it includes at least one selection for each 
OR-refinement and that it includes one and only selection for 
each OR-responsibility assignment. To achieve this, we 
constraint crossovers to happen between sequences of bit that 
encode choices for mutually exclusive option selections. 
Figure 5 illustrates this process for the 4 decision points of 
the LAS model in Figure 1. In this model, the alternative 
options for satisfying each goal are all mutually exclusive. In 
Figure 5, the system design obtained by crossover keeps the 
design choices from parent 1 for the decision points 1 and 4 
and from parent 2 for the decision points 2 and 3. 

D. Exploring Alternatives for the LAS Case Study 

Let us consider an example optimisation run on our LAS 
goal model. To make the example slightly more complicated 
we will add a fifth decision point to those shown in Figure 1, 
namely the possibility to increase the number of ambulances 
from a current value of 100 to a maximum of 200. In our 
model, this decision variable impacts on the quality variable 
DistanceAllocatedAmbulance in Figure 2; the distance between 
an incident and the nearest ambulance will decrease when 
there‟s more ambulance to choose from. To limit the size of 
the search space, we only consider increments in ambulance 
number by 20 units, which creates six options for this 
decision point. Adding this decision point gives us a global 
design space for the LAS system of 4×3×3×3×6 = 648 
alternative systems. Relatively short searches can be 

 
Figure 5. Genetic crossover for design choices 



 

performed using the genetic algorithm (e.g. a search with 50 
generations for a population of 20 runs in 3.5 minutes) but 
they return solutions that are still far from the Pareto-
optimal. Increasing the population size and number of 
generations improves the quality of the solutions but it did 
not produce better solutions than exhaustive search when 
allowed to run for the same amount time.  For example, 
Figure 6 plots the cost and 14 minute response rate of the 
solutions explored through an exhaustive search (depicted as 
squares) and of the solutions returns by the genetic algorithm 
running (depicted as circles) when allowed to run for the 
same amount of time. A genetic algorithm approach would 
still be useful however when working over much larger 
models where an exhaustive search is not feasible. 

The mixed result we obtained in our use of the genetic 
algorithm suggests it would be worthwhile to try developing 
optimisation algorithms that are specific to decision 
problems represented in goal models. These may exploit the 
structure of the goal refinement graph to achieve better 
performance and coverage of the optimal design solutions. 
The goal-based recursive structure of the simulation process 
defined in the previous section may help achieving this. 

The presentation of solutions in Figure 6 allows decision 
makers to explore tradeoffs between conflicting objectives. 
For example, one of these design choices in Figure 6 is [1.1, 

2.2, 3.1, 4.1, 5.1], representing the first option for all decision 
points except the second where the second option is selected. 
This design choice is very cheap since most options are for 
the existing system and the use mobile data terminals for 
satisfying the goal Achieve [Allocated Ambulance Mobilised] gives 

a performance increase for relatively little cost: 98% for 
14MinResponseRate and 500k Cost. Another of these design 
choices, near the opposite extreme, is [1.1, 2.3, 3.2, 4.3, 5.3], 
representing a more expensive solution: over 99% for 
14MinResponseRate and 3418k Cost. System designers may 
then explore the relatively small set of optimal solutions. For 
example, though both solutions above are “optimal”, 
stakeholders may of course decide that the slight 
performance increase of the latter solution is not worth the 
extra investment. Visualising the output as a plot can help 
with the identification of sweet spots where e.g. a near-
optimal response rate can be achieved for relatively little 
cost.  

All decision variables in the LAS model are finite and 
discrete. Other problems may involve a mix of continuous 
and discrete decision variables –making an exhaustive search 
of the design space impossible. For example, our quantitative 
goal model for a plastic card fraud detection system contains 
a continuous decision variable corresponding to a threshold 
value at which alerts should be generated for transactions 
that are suspected to be fraudulent. A higher threshold means 
fewer alerts are generated thereby reducing the risk of false 
alerts but increasing the risk of undetected fraud. Other 
decision variables are discrete, corresponding to alternative 
responsibility assignment of goals to agents. Further work is 
required to develop and explore the use of multi-objective 
optimisation algorithm for goal models involving such mix 
of continuous and discrete variables. 

 
Figure 6. Visualisation of multi-objective search results 



 

V. RELATED WORK 

There exist many requirements engineering techniques to 
guide the selection among alternative system designs. 
Qualitative techniques such as the NFR framework [13] and 
Win-Win model [14] allow one to reason about the positive 
or negative influences of alternative design options on goals, 
but the qualitative information contained in these models is 
generally insufficient to make informed decisions. Numerous 
quantitative techniques have been proposed with the aim of 
providing more detailed information on which to base 
requirements decisions. These include NASA‟s DDP 
framework [15],  the house of quality matrix in the QFD 
method [16], and quantitative extensions to goal models in 
the NFR, KAOS, and GRL frameworks [17][18][19]. 
However, more detailed does not necessarily mean more 
accurate. A major problem with the above techniques is that 
there is no way to check the accuracy of the quantitative 
models against the real-world system they represent because 
the quantities they manipulate have no physical 
interpretation in the application domain [3]. For example, 
specifying that the impact of a computer-based call taking 
system on the LAS performance goal is 7 whereas the impact 
of an automated call location system is 5 tells us that 
stakeholders believe the first option is slightly better than the 
second but, because these numbers have no meaning in the 
application domain, there is no way of checking the validity 
of that belief. This contrasts with the quantitative approaches 
where level of goals satisfaction have a concrete physical 
interpretation such as VOLERE fit criteria [5], Planguage 
quantified requirements [6] and performance indicators used 
in organization management and recently introduced in the 
User Requirements Notation [20][21]. Our quantitative goal 
modelling framework provides formal foundation for 
reasoning about measurable levels of goal [3]. This paper 
extends this framework with automated techniques for 
simulating and optimizing the design decisions in such 
models. These techniques allow one to simulate large 
numbers of alternative systems designs more efficiently and 
systematically than the initial ad-hoc process of [3] that 
relied on transforming refinement equations into integrals on 
quality variables probability density functions.   

The multi-objective search-based optimization technique 
proposed in this paper can be seen as an alternative and 
extension to the backward propagation algorithms on 
qualitative and quantitative goal models [22][19]. These 
algorithms allow one to explore whether there exist sets of 
design alternatives in a goal model that satisfy top-level 
goals to acceptable levels but not to search for optimal 
design alternatives among them.  

Probabilistic models such as queuing models, Markov 
models, reliability block diagrams, fault trees, and event 
trees provide standard techniques to evaluate performance, 
reliability, and availability goals [23].  Our quantitative goal 
modelling framework [3] differs from probabilistic transition 
systems in several ways: it is goal-based and declarative 
instead of being operational, it allows for compositional 
reasoning with respect to the goal structure, and it allows for 
a variety of probability distribution function to be used 

whereas exponential distributions only are used in 
probabilistic transition systems. These differences imply 
entirely different simulation techniques than the ones used 
for probabilistic transition systems [8]. 

 Bayesian Belief Networks (BBNs) provide alternative 
models for evaluating and making decisions among 
alternative system designs [24]. They are however limited to 
discrete random variables whose probabilities are related 
through the specification of probability tables. Extensions to 
standard BBN models allow one to automatically transform 
continuous random variables into discrete BBN nodes [25]. 
We had initially envisaged using such technique to map 
quantitative goal models to BBN thereby allowing standard 
BBN tools to be used for analysing quantitative goal models. 
Our simulation technique is an alternative approach that 
avoids such transformations altogether. 

Stochastic simulation methods are common in many 
areas of engineering and management. In this paper, we 
show how probabilistic simulation models for complex 
socio-technical systems can be constructed systematically 
from quantitative goal-oriented requirements models. 
Combining simulation models with optimization techniques 
is also a common engineering approach, although to our 
knowledge it has never been used to guide the choices of 
design decision in goal models. Multi-objective optimization 
techniques are receiving increasing attention in requirements 
engineering. They are notably used to guide the selection of 
requirements based on cost, value and fairness [26][27], and 
to guide the selection of optimal sets of actions to mitigate 
risks obstructing project goals [15][28]. Our work differs 
from these in that it uses richer models (given by refinement 
equations following the structure of the goal-refinement 
graph) to relate alternative design options to objective 
functions that are measurable in the application domain.  

VI. CONCLUSION 

Simulation and multi-objective optimization techniques 
have an important role to play in requirements engineering. 
This paper showed how they can support decision making 
among large numbers of design alternatives in goal-oriented 
requirements models. In particular, we have showed how 
stochastic simulation models of design alternatives can be 
derived from quantitative goal models, how such simulations 
can be used to estimate levels of goals satisfaction specified 
in terms of measurable objective functions, and how they can 
be used by multi-objective optimisation algorithm to search 
for optimal designs. A key feature of these models, as 
opposed to other quantitative goal models, is that objective 
functions and model variables have physical interpretation in 
the application domain. This allows the models to be tested 
against actual system behaviours. 

Much further work lies ahead. A first set of questions 
concerns the model elaboration. Systematic techniques need 
to be developed to help the construction of such models, 
their validation against the current system, and their 
refinement based on the finding of such validation. 
Techniques for specifying adequate objective functions for 
„soft‟ criteria and for adequately eliciting quality variables 
probability distributions will be particularly important. It will 



 

also be important to understand what levels of detail and 
accuracy are required of quantitative goal models to be 
useful to guide decision making, and when their elaboration 
cost justifies their use against simpler qualitative or 
quantitative techniques. Details concerning the inclusion of 
obstacle resolution alternatives in the quantitative model also 
still need to be resolved. A second set of questions concerns 
computational challenges. This involves improving the 
performance of simulation and optimisation algorithms, 
extending the analysis capabilities with sensitivity analysis, 
robustness analysis, and allowing optimisation with respect 
to a mix of continuous and discrete decision variables. A 
third set of questions concerns the usage of these techniques 
by decision makers, notably how to support the analysis of 
simulation runs and Pareto-optimal set of solutions to gain 
useful insights about the decision problem and how to use 
such model to support the human and political aspects of 
decision making.  
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