

Simulating and Optimising Design Decisions in Quantitative Goal Models

William Heaven and Emmanuel Letier

Department of Computer Science

University College London
{w.heaven, e.letier}@cs.ucl.ac.uk

Abstract—Making decisions among a set of alternative system

designs is an essential activity of requirements engineering. It

involves evaluating how well each alternative satisfies the

stakeholders’ goals and selecting one alternative that achieves

some optimal tradeoffs between possibly conflicting goals.

Quantitative goal models support such activities by describing

how alternative system designs – expressed as alternative goal

refinements and responsibility assignments – impact on the

levels of goal satisfaction specified in terms of measurable

objective functions. Analyzing large numbers of alternative

designs in such models is an expensive activity for which no

dedicated tool support is currently available. This paper takes

a first step towards providing such support by presenting

automated techniques for (i) simulating quantitative goal

models so as to estimate the levels of goal satisfaction

contributed by alternative system designs and (ii) optimising

the system design by applying a multi-objective optimisation

algorithm to search through the design space. These techniques

are presented and validated using a quantitative goal model for

a well-known ambulance service system.

Keywords — requirements simulation and optimisation;

quality requirements; goal-oriented requirements engineering;

quantitative modelling; search-based software engineering

I. INTRODUCTION

Consider a development project to improve the efficiency
of an existing system. Stakeholders and designers have
identified several alternative ways that improvements might
be achieved and you have to guide them in making the best
decisions about which of these alternatives ought to be
selected for implementation. Imagine, for example, an
ambulance dispatching system for the London Ambulance
Service (LAS) [1][2]. This system must ensure that
ambulances respond to reported incidents across the city as
swiftly as possible. Alternative options for improving the
system include improving some of the call-taking features of
the software so that details about reported incidents can be
encoded faster and more accurately; replacing ambulance
radios with mobile data terminals so that more information
can be communicated directly to the ambulance crews; and
improving the speed and accuracy of ambulance-allocation
decisions by automating all or part of the allocation process.
These alternatives have different costs and different impacts
on the system goals. A key goal in this example is to
maximize the 14 minute response rate, that is, the percentage
of incidents for which the first ambulance arrives at the
incident scene within 14 minutes of the first call. This goal

comes from a 1992 UK Government standard requiring the
14 minute response rate to be above or equal to 95 %. Being
able to estimate how much each alternative option would
contribute to improving the 14 minute response rate would
help decision makers make informed decisions between the
alternative options.

In previous work, we have presented a quantitative goal
modeling framework for specifying goals with measurable
objective functions and modeling the impact that alternative
system designs have on these goals [3]. This framework
extends the KAOS goal modeling language [4] with a
probabilistic layer allowing one to specify and reason about
measurable quantitative requirements in the spirit of the
VOLERE [5] and Planguage methods [6]. The work
presented there motivates the need for quantitative goal
models based on measurable goal definitions, defines the
language‟s formal semantics, and presents a set of heuristics
for the systematic elaboration of such models. It does not
consider how to automate the model analysis. It gives an
illustration of how quantitative goal models can be used to
compare three alternative system designs for an ambulance
despatching system. This analysis was done following an ad-
hoc process using a mix of analytical and numerical
methods. The process used there is error-prone, labour
intensive, and does not scale to very large numbers of design
alternatives. Our objective in this paper is to address these
limitations by presenting automated techniques for
evaluating large numbers of design alternatives and
identifying the optimal ones among them.

The paper presents a simulation and optimisation
framework for evaluating the impact of alternative system
designs on high level goals and for finding optimal design
options among the alternatives. Given a quantitative goal
model, our technique generates a stochastic simulation
model able to simulate the whole range of alternative designs
in the goal model. The simulation takes as input a particular
set of design choices and a sample size to be simulated (for
example the number of incidents to be simulated), it then
uses the probability distributions and equations of the
quantitative goal model to simulate the behaviour of that
particular design and compute the levels of goal satisfaction
obtained for that simulation. This simulation model is then
used by a multi-objective optimization component that
searches through the design space in order to identify the
optimal design choices.

The techniques are illustrated on the London Ambulance
Service goal model for which a prototype simulation model –
implemented in Matlab – is generated manually (but

systematically) from the goal model and the NSGAII genetic
algorithm is used to search through the design space. The
case study shows the potential of simulation and
optimisation techniques in providing sound decision making
tools for requirements engineering and highlights the need
for improved optimization algorithms for exploring
alternative design options in such goal models.

II. BACKGROUND

A. Goal-Oriented RE with KAOS

Goal-oriented requirements engineering is a popular
paradigm for eliciting, modelling, and reasoning about
system requirements [4]. Goals are prescriptive statements of
intent that the system should satisfy through the cooperation
of its agents. Agents are active system components playing
specific roles in the goals satisfaction. Agents include human
agents, software components, and hardware devices such as
sensors and actuators. Goals can be AND/OR refined into
subgoals. An AND-refinement relates a parent goal to a set of
subgoals; it means that the satisfaction of all subgoals
ensures the satisfaction of the parent goal in the application
domain. An OR-refinement relates a parent goal to a set of
alternative AND-refinements; it means that any one of the
alternative AND-refinements is sufficient for satisfying the
parent goal. OR-refinements are used to model alternative
design choices for satisfying the parent goal. Goals are
AND-refined into subgoals until the resulting subgoals can
be assigned as the responsibility of single agents. Assigning
a goal to an agent means that the agent is the only one
required to restrict its behaviour to ensure the goal‟s
satisfaction. OR-responsibility assignments are used to
model alternative assignment of goals to agents. These
correspond to alternative design choices, for example of
assigning a goal to a human or automated agent.

Figure 1 shows portion of a goal model built for the
London Ambulance Service (LAS) case study [3], which was
based on the report from the inquiry following a major
system failure [1]. The top-level goal in this figure, Achieve

[Ambulance Intervention], requires that a first ambulance arrives
at the incident scene within 14 minutes after the first call.

Goal specifications include a natural language definition and
an optional formal specification in Linear Temporal Logic.
The goal Achieve [Ambulance Intervention] is AND-refined into
the subgoals Achieve [Ambulance Mobilisation] and Achieve

[Mobilised Ambulance Intervention]. The goal Achieve [Ambulance

Mobilised] requires that an ambulance be mobilised to an
incident within 3 minutes after the first call and that the
mobilised ambulance is less than 11 minutes away from the
incident. The goal Achieve [Mobilised Ambulance Intervention]
requires that once an ambulance is mobilised for an incident
location it will reach that location without delay.

Options correspond to alternative choices at decision
points in the goal model, where a decision point is either an
OR refinement or an OR responsibility assignment (other
decision points related to conflict and obstacle resolutions
[2][7] are not considered in this paper). Options correspond
to the system reference attribute attached to goal refinements,
responsibility assignments, and obstacle resolutions in the
KAOS meta-model [4]. To save space, in Figure 1 we show
the options without showing the alternative goal refinements
or responsibility assignments that define them. In this model,
the goal Achieve [Incident Form Encoded] has four alternative
options for its satisfaction. The first corresponds to the
current paper based-system (in 1992), the second
corresponds to using an computer-based call tacking system,
the third consists in using an automated system for locating
calls, and the fourth consists in using a computer-based call
taking system with automated call location. Options for
satisfying the goal Achieve [Ambulance Allocated] are to use the
current radio-based system, or to use mobile data terminals
on board of ambulances of which two different systems
could be chosen, system A or B.

B. Quantitative Goal Models

We have previously developed an extension of the
KAOS framework for reasoning about alternative design
choices based on measurable, domain-specific criteria [3]. In
this framework, the degrees of satisfaction for a goal are
specified using objective functions defined in terms of
quality variables, which are random variables (i.e. functions
over probability spaces). For example, we can specify the

Ambulance Intervention

Ambulance Mobilized Mobilized Ambulance Intervention

Incident Form Encoded Ambulance Mobilized
Based on Incident Form

Option 1.1.Curent
paper-based

Option 1.2.
Computer-based
call taking

Option 1.3.
Automated Call
Location

Option 1.4.
Computer-based +
automated location

Ambulance Allocated
Based on Incident Form

Allocated Ambulance Mobilised

Ambulance Allocated Based on
Incident Form and Ambulance Info

Option 2.1. Current
Radio-based

Option 2.2.
MDT- System A

Option 2.3.
MDT- System B

Accurate Ambulance Info

Option 3.1. Current
radio and paper-based

Option 3.2. Automated
Vehicle Location (A)

Option 3.3. Automated
Vehicle Location (B)

Option 4.1. Current
paper-based

Option 4.2.Interactive
Allocation

Option 4.3.Fully
Automated Allocation

Figure 1. Partial goal model for the LAS system showing decision points for alternative system designs

goal Achieve [Ambulance Intervention] as follows:

Goal Achieve [Ambulance Intervention]

Definition

For every urgent call reporting an incident, there should be an
ambulance at the incident scene within 14 minutes after receiving the
first call.

Formal Definition ( i:Incident, c: UrgentCall)

Reporting(c, i)  ◊≤14mins ( a:Ambulance) Intervention(a,i)

Objective Functions

14MinResponseRate = MAX [P(ResponseTime 14 mins)]
8MinResponseRate = MAX [P(ResponseTime 8 mins)]

Quality Variable

ResponseTime: Incident -> Time
{def: the duration in seconds between the start of the first call
reporting the incident and the arrival of the first ambulance at the
incident scene.}

The goal‟s definition and formal definition define what it
means for the goal to be satisfied in an absolute sense; the
goal semantic is the set of system behaviours – i.e. sequences
of system states – that satisfy the goal‟s formal definition.
The goal objective functions define the measures to be used
for assessing partial levels of goal satisfaction. Objective
functions are defined in terms of quality variables that
correspond to domain phenomena related to the goal‟s
definition. In this example, the quality variable is the
incident response time, and the objective functions are the
probability that the response time is less than 14 minutes and
8 minutes, respectively. In this example, both objective
functions have to be maximized. For the actual LAS system,
the target values for these objective functions are
Government standards that in 1992 were set at 95% and
50%, respectively. The specification of adequate objective
functions is one of the most critical steps of a system design.
Designing an ambulance system to optimize these objective
functions is likely to yield a very different system than one
whose only objective function would be to minimize the
mean response time for example.

The quality variables associated with a goal can be
related to quality variables associated with its subgoals
through domain-specific refinement equations. For example,
the quality variable response time is related to the quality
variables MobilisationTime, MobilisationDistance, and

AmbulanceDelay of the goals Achieve [Ambulance Mobilisation]

and Achieve [Mobilised Ambulance Intervention] through the
following refinement equations:

ResponseTime =

 MobilisationTime + MobilisationDistance + AmbulanceDelay.

The variable MobilisationTime denotes the time it takes to
mobilize the first ambulance, MobilisationDistance denotes the
time-distance between the mobilised ambulance and the
incident location (e.g. the ambulance is 11 minutes away
from the incident), and AmbulanceDelay denotes the difference
between the mobilisation distance and the actual time taken
by the ambulance to reach the incident location. Figure 2
shows the goals‟ quality variables for the portion of the goal
model in Figure 1.

Quality variables can be of any type, they are not
restricted to a time domain. For example, in the LAS model
the goal Achieve [Ambulance Intervention] has an additional
Boolean quality variable

IncidentDropped: Incident -> Boolean

that is true of reported incidents for which no ambulance
ever arrives at the incident scene [3]. The associated
objective (not shown in the example above) is to minimize
the probability that an incident is dropped. This quality
variable can be related to quality variables of subgoals
through the following equation involving other Boolean
quality variables:

IncidentDropped =
NoAmbulanceMobilisedWrongMobilisationDestination
AmbulanceInterventionFailure.

Goals quality variables are thereby recursively related to
other quality variables along the goal refinement links until
reaching goals assigned to the responsibility of single agents.
Quality variables attached to a goal assigned to a single agent
can be further related to quality variables attached to
obstacles to that goal. An obstacle to a goal is a condition
that violates the goal [2]. For example, AmbulanceDelay could
be a function of the quality variables AmbulanceBreakdown,
TrafficLevel, and AmbluanceLost attached to obstacles to the

Ambulance Intervention

Ambulance Mobilised Mobilised Ambulance Intervention

Incident Form Encoded Ambulance Mobilised Based on Incident Form

Ambulance Allocated Based on Incident Form Allocated Ambulance Mobilised

ResponseTime

AmbulanceDelay MobilisationTime MobilisationDistance

MobilisationCommunicationTime

CallTakingTime DistanceMobilised
Ambulance

MobilisationTime
AfterFormEncoding

AllocationTime DistanceAllocatedAmbulance

Figure 2. Quality variables for the LAS goal model

goal Achieve [Mobilized Ambulance Intervention] [3]. The
handling of quality variables and refinement equations on
obstacles is the same as for quality variables attached to
goals and therefore does not require a special treatment when
simulating the model.

Quantitative goal models can be used to evaluate the
expected value for the goals‟ objective functions in
alternative system designs. This evaluation requires an
estimation of the probability distribution function for each
leaf quality variable in the model. For example, the variable
CallTakingTime – denoting the time it takes to fill in the
incident form after the start of the first call– could be
characterized as having an exponential distribution whose
mean varies from 60 seconds to 30 seconds depending on
which option is selected for satisfying the goal:

CallTakingTime =
Exp(60) if Option 1.1 is selected
Exp(40) if Option 1.2 is selected
Exp(45) if Option 1.3 is selected
Exp(30) if Option 1.4 is selected

Estimating the probability distributions of leaf quality
variables can be done in various ways; it can for example be
inferred from statistical data about the existing system or be
constructed from expert judgement about the future system.
An important distinction is to be made between descriptive,
predictive, and prescriptive probability distributions. A
descriptive distribution is one that describes characteristics
of the existing system, a predictive distribution is one that
predicts some characteristics for the future system, and a
prescriptive distribution is one that prescribes some
characteristics for the future system. For example, the
probability distribution for CallTakingTime is descriptive for
Option 1.1 because it describes how long it takes to write
down call details on incident form in the existing paper-
based system. It is predictive for Option 1.2 because it
predicts how long it will take to call takers to encode
incident details using an existing computer-based call
tacking system. It is prescriptive for Option 1.3 because it
prescribes how the automated call location feature should
contribute to reducing the call taking time. The probability
distribution for Option 1.2 could also be seen as prescriptive
if it is meant to impose a requirement to be met by the
designers of the computer-based call taking system.

Unlike probabilistic transition systems and model
checkers [8], the model is not restricted to random variables
with exponential distributions. Any distribution function can
be used. For example, the quality variable AmbulanceDelay
could be characterized as having a normal distribution with a
mean of 0 and standard deviation of 120 seconds:
AmbulanceDelay = Normal(0, 120).

Computing objective functions from leaf quality
variables and refinement equations rely on the assumption
that the leaf quality variables are statistically independent.
This assumption –also used in quantitative fault trees and
Bayesian networks– is required to ensure correctness of the
computations (it allows the probability of two events – e.g.
that the call taking time for an incident is less than 1 minute
and its ambulance allocation time less than 2 minutes – to be
computed as the product of the probability of each event).

The stochastic simulation process we present in the
following section relies on this assumption because it
generates simulated values for each quality variable
according to its probability distribution function
independently from other variables simulations. If the system
analysts suspect that the independence assumption between
leaf quality variables does not hold, they have to elaborate
the model by refining the quality variables further until
reaching leaf quality variables that can be considered to be
independent.

Systematic techniques for elaborating quantitative goal
models have been proposed [3]. These include heuristics for
deriving a goal's quality variables and objective functions
from the goal's definition, patterns of refinement equations,
and guidance on how to reach a set of independent leaf
quality variables.

III. EVALUATING ALTERNATIVES WITH STOCHASTIC

SIMULATION

The problem we address is how to evaluate and compare
degrees of goal satisfaction contributed by alternative system
designs. In the context of our quantitative goal model, the
problem is thus how to compute the objective functions for
the higher-level goals given the refinement equations and
estimates of the probability distributions for all leaf quality
variables. The problem is particularly complex because our
models allows any refinement equations (they are not
restricted to linear functions such as weighted sums) and leaf
quality variables can have any distributions (they are not
restricted to a single distribution type).

Our previous approach for computing objective functions
involved transforming the quality variable refinement
equations into equations relating the quality variables
probability density functions, which are integral equations
that we resolved using numerical techniques [3]. This
process is labour-intensive, error-prone, and does not scale to
the evaluation of large number of alternatives.

The approach described in this paper overcomes these
limitations by generating a stochastic simulation model from
the quantitative goal model. The stochastic simulation model
simulates each alternative system design by generating
sample values for each leaf quality variables according to its
probability distribution in a chosen design option and
computes the objective functions values obtained in that
simulation. An additional benefit of this approach is that it
generates simulated values for all quality variables that could
then be analysed to gain further insights in the system
behaviour than just computing its objective functions.

A. Simulating Goal Models

Our simulation process can be described as the function

SimulateGoal :G × N→ Gsim

that takes as input a goal G for which an objective function is
defined and a parameter N specifying a sample size for the
quality variables in the model, and generates a structure Gsim
consisting of a goal graph rooted at G (i.e. G and all
transitively related sub-goals) in which approximate values
have been computed for all objective functions and

simulated values generated for all quality variables. If the
model contains quality variables with different domains,
separate sample sizes can be specified for each.

For example, we might simulate our top-level goal
Achieve [Ambulance Intervention] with a sample size of 1000, i.e.
we would simulate the goal for 1000 incidents since this is
the domain for the quality variables of the model (e.g.
ResponseTime: Incident → Time). The procedure call

SimulateGoal(Ambulance Intervention, 1000)

then generates a goal graph rooted at this top-level goal for
which we have computed

 a vector of 1000 simulated values for each quality
variable in this goal graph, e.g. ResponseTime = [v1,
v2, ..., v1000]

 simulated values for the goal's two objective
functions computed using the 1000 simulated
values for ResponseTime.

Our simulation algorithm computes the quality variables
and objective functions simulated values by traversing the
goal graph recursively from the top-level goals. Since a goal
model is a directed acyclic graph, we must ensure that a goal
is not simulated twice for the same instances in the quality
variable sample space (e.g. we must avoid generating two
different vectors of simulated values of CallTakingTime for the
same incidents). To achieve this, the algorithm stores the
results of goals that have already been simulated in a data
structure Gsim. The procedure for simulating a goal G is
composed of the following steps:

1. If G has subgoals (or obstacles), simulate each
subgoal (or obstacle) that has not already been
simulated, i.e. that is not already in Gsim.

2. For each leaf quality variable in G (if any), generate
its vector of N simulated values using its probability
distribution in the simulated design option.

3. For each non-leaf quality variable in G (if any),
compute its vector of sample values using its
refinement equation and the simulated values for
the quality variables involved in that equation.

4. If the goal has objective functions, compute the
objective functions simulated values from the
quality variables simulated values.

5. Add the goal and its simulated quality variables and
objective functions to Gsim.

Our simulation model for the LAS quantitative goal
model is implemented in Matlab. We use Matlab built-in
functions to generate sample values for all leaf quality
variables. For example, the Matlab command

CallTakingTime = exprnd(meanCallTakingTime, 1, N)

generates a vector CallTakingTime of N random numbers from
an exponential distribution with mean of meanCallTakingTime.
Each value in this vector represents the call taking time for
one particular incident. The quality variables refinement
equations are then applied to the vectors of sample quality
variable values using the usual element-wise vector
operations. For example, the equation

ResponseTime =
 MobilisationTime + MobilisationDistance + AmbulanceDelay

generates an N-dimension vector obtained from the element-
wise addition of the three vectors in the right hand side of the
equation. Simulated values for the goals‟ objective functions
are computed from the simulated vectors for the goal‟s
quality variables using the frequentist interpretation of
probabilities. For example, the 8 minutes and 14 minutes
response rate defined in Section II are computed as the
percentage of simulated response time that is below 8 and 14
minutes, respectively:

8MinResponseRate = sum(ResponseTime<= 8 min)/N
14MinResponseRate = sum(ResponseTime<=14 min)/N

where N is the number of simulated incidents.
In addition to the LAS simulation, we have also

developed a simulation model for a financial fraud detection
system based on a quantitative goal model for that system
[9][10]. This simulation is implemented in R, a mathematical
programming environment that provides the same high-level
mechanisms for random variable generation and vector
manipulation as Matlab.

Using these high-level mathematical environments
allowed us to build quick prototypes for the simulation
models and to easily connect these models to existing
optimization algorithms as will be described in Section IV.
The goal-based, recursive structure of our simulation
technique could equally be implemented in faster, procedural
programming languages. Ideally, future work should
automate the generation of the simulation models from
quantitative goal models.

B. An Example Simulation

As an example let us compute approximate values for the
objective functions 8MinResponseRate and 14MinResponseRate
for the current system in Figure 1, i.e. the system defined by
selecting options 1.1., 2.1, 3.1, and 4.1. In addition to
providing a benchmark against which to judge potential
improvement, simulating the existing system design can be a
useful exercise in practice since it may be possible to
compare the approximate values computed for the objective
functions with actual values measured for the real system,
thereby validating the quantitative goal model. We can also
assume that good estimates of the expected values and
probability distributions for the quality variables in question
are known for the current system. Let us assume the
estimated distribution functions for the leaf quality variables
in Figure 1 are defined as follows (time is measured in
seconds):

CallTakingTime = Exp(60)
AmbulanceDelay = Normal(0, 120)
AllocationTime = Exp(60)
MobilisationCommunicationTime = Exp(60)

The quality variable DistanceAllocatedAmbulance, denoting
the time-distance between the incident location and the
ambulance allocated to the incident, depends on the quality
variables denoting the number of ambulances, the frequency
of incidents, the city size, the error in ambulance location
and availability information, and error in the allocation
decision process attached to lower-level goals and domain
properties not shown in Figure 1.

For this example, a simulation run with 1000 incidents
computes the expected values for the 8 and 14 minutes
response rate to be 61% and 97%, respectively. These rates
are both above the government standard. However, we may
still be interested in finding improvements. Running the
simulation again but this time selecting the second option for
Achieve [Ambulance Allocated Based On Incident Form], which
allocates responsibility for the goal to a software agent
instead of a human operator, giving an estimated mean
Allocation Decision Time of only 5 seconds, we see an improved
approximate value for 8MinReponseRateof 73%. This
simulation returns a result in about a second on an average
desktop machine.

C. Setting the simulation size to a confidence interval

Because our model involves probabilistic variables, the
simulation of a particular system design is non-deterministic
and the simulated value for its goals‟ objective functions
may not correspond to their exact values for the model. The
deviation between an objective function simulated value and
its exact value will decrease as the size of the sample space
used during the simulation increases. This deviation can be
assessed using the common statistical measures of standard
error and confidence interval. We have used such measures
to allow goal simulation to incrementally increase the sample
size to be simulated until reaching a confidence interval of
95% (or some other desired target) on all top-level objective
functions.

IV. SEARCHING FOR OPTIMAL TRADEOFFS IN MULTI-

OBJECTIVE DESIGNS

We have seen how stochastic simulation can be used to
evaluate alternative system designs. However, by itself, the
simulation-based approach we have described still requires
comparisons between distinct design choices to be assessed
manually. For example, simulations could be run
individually for two separate designs and the results
compared by hand, with the engineer opting for the design
that gives the better degrees of satisfaction across the
important goals of interest. But teasing out the subtleties of
different tradeoffs between multiple competing goals is not
straightforward. More importantly the design space of
distinct alternative system designs grows exponentially with
the number of individual design choices. For example, if we
have 2 goals each with 3 possible OR-refinements we have 9
potential system designs to evaluate, and if we add just 2
more goals, each with 4 alternative refinements, we have 144
designs (assuming these alternatives are neither mutually
inconsistent nor mutually dependent, which would constrain
the design space somewhat). Techniques are therefore
needed to guide the evaluation and comparison of large
numbers of alternative system designs in goal models.

A. Multi-Objective Optimisation Problems

The problem to be solved is a multi-objective
optimization problem because design choices must take into
account multiple stakeholders‟ goals that are not directly
comparable one to another. For example, for the LAS, the
objectives of maximizing the 14 minutes and 8 minutes

response rates must be balanced against an objective of
minimising costs. For a plastic card fraud detection system,
the objective of minimizing undetected frauds must be
balanced against the objective of minimizing false alerts that
result in cards being blocked unnecessarily. These two
objectives are themselves related to conflicting goals at a
higher-level in the goal model such as minimizing financial
loss due to fraud, minimizing card holders‟ inconvenience,
and minimizing fraud investigation costs. In general, there is
not a single design that is better than all others for all
objectives simultaneously.

Formally, the problem consists in selecting options for all
decision points in the goal model, i.e. for all alternative goal
refinements and responsibility assignments, so as to optimize
the set of objective functions {OF1, ..., OFn} attached to the
models‟ top-level goals. If there are M decision points, a
particular system design can be represented as a vector d =

[d1, ..., dM] where di represents the choice made for decision
point i. The objective function OFi for a particular system
design d = [d1, ..., dm], noted OFi(d), is computed by simulating
the goal model for this set of design options. A system
design d is said to dominate a system design d’ if and only if
it performs better than d’ for at least one objective function
and performs as least as well as d’ for all other objective
functions:

OFi(d) >OFi(d') for some i in 1..n

OFi(d) ≥OFi(d') for all i in 1..n.

(This formulation assumes that all objective functions
have to be maximized. An objective function that has to be
minimized can always be transformed into one that has to be
maximised by reversing its sign.) A system design is said to
be Pareto-optimal if it is not dominated by any other system
design. The set of Pareto-optimal solutions is therefore
composed of all “best” designs from the goal model.
Allowing decision makers to explore this set helps them to
identify what can be achieved and to select one design in that

G

G1 G2

G1.2 G1.1 G1.2 G1.1

refinement A refinement B
OR

Ag1 Ag2 Ag3

Responsibility

(XOR)

5 bit chromosome where
bit1 = 1 if refinement A is selected
bit2 = 1 if refinement B is selected
bit3 = 1 if Ag1 is responsible for G2
bit4 = 1 if Ag2 is responsible for G2
bit5 = 1 if Ag3 is responsible for G2

Figure 1. Figure 4. Example goal model with decision points and bit

vector encoding

set that corresponds to an appropriate trade-off between the
multiple objectives.

One approach to solving a multi-objective optimization
problem is to transform it into a single objective problem by
aggregating all objectives into a single one defined as the
weighted sum of the individual objectives. This approach,
however, requires the a priori elicitation of the objective
functions weights –which are subjective and without
physical interpretation in the application domain– and
produces as output a single element in the set of Pareto-
optimal solutions instead of allowing decision makers to
explore the full set of such solutions [11].

B. Multi-Objective Optimization Algorithms

Our aim in this section is to explore the use of out-of-the-
box multi-objective optimization techniques for exploring
alternative system designs in goal models. Standard
techniques such as Integer Linear Programming will in
general not be applicable because objective functions and
quality variable refinement equations are not restricted to
linear functions. A suitable approach in our context is to use
meta-heuristic search algorithms to let the objective
functions guide the search through the design space. Such
algorithms are used increasingly to solve optimization
problems in different areas of software engineering [11]. For
the LAS case study, we have used NSGA-II [12] which is a
state-of-the-art genetic algorithm that has an implementation
in Matlab‟s Global Optimization Toolbox. We here briefly
sketch the basic mechanisms of such an algorithm necessary
to understand how to map the search for optimal design
decisions in goal models to an adequate representation
allowing such algorithm to be used.

Genetic search-based algorithms converge on a solution
over the course of a number of iterations, known as
generations. In our case, a solution would be a set of Pareto
optimal designs. Each generation a candidate approximation
of the real solution – known as that generation‟s population –
is selected and each member of the population – known as a
chromosome – is evaluated via a fitness function, which
ranks the chromosomes according to given criteria. For
multi-objective optimisation we would rank highly those
chromosomes that represent a value that is dominated by no
(or relatively few) others in the population. We evaluate
alternative chromosomes (design choices) based on the
approximate values they contribute to objective functions.
The next generation‟s population is then selected from the
highest ranking chromosomes of the current population by a
customisable process known as crossover, which splices
parts of two parent chromosomes together to create a new
one that inherits characteristics of both parents. Typically, a
certain number of the highest ranking chromosomes will also
survive through to the next generation. The key feature of
this algorithm is that exploration of the search space is
guided by the fitness function since it determines the
direction in which the search proceeds by selecting the best
candidates for crossover.

C. Encoding the Optimisation Problem for Design Choices

Genetic algorithms like NSGAII represent chromosomes
using a binary representation, i.e. each chromosome is
represented as a vector of bits. In order to use such algorithm
to explore alternative design choices in goal models, we
therefore need to define a mapping from alternative system
designs in the goal model to a binary representation. Figure 4
illustrates this mapping for a small general example. Here the
goal model has five decision points which we encode with a
five-bit vector in which 1 (resp. 0) indicates that the design
option represented by that bit is selected (resp. not selected).
Further constraints on the selection of design choices, such
as exclusive alternatives or mutual dependencies between
design options are captured by logical constraints over these
bit vectors. For example, in each system design a goal can be
assigned as the responsibility of at most one agent. In our
example, this means that bits 3 to 5 in a chromosome are
mutually exclusive.

When defining the crossover function, we need to ensure
that the crossover between two bit vectors results in a bit
vector that corresponds to a valid set of design choices in the
goal model, i.e. that it includes at least one selection for each
OR-refinement and that it includes one and only selection for
each OR-responsibility assignment. To achieve this, we
constraint crossovers to happen between sequences of bit that
encode choices for mutually exclusive option selections.
Figure 5 illustrates this process for the 4 decision points of
the LAS model in Figure 1. In this model, the alternative
options for satisfying each goal are all mutually exclusive. In
Figure 5, the system design obtained by crossover keeps the
design choices from parent 1 for the decision points 1 and 4
and from parent 2 for the decision points 2 and 3.

D. Exploring Alternatives for the LAS Case Study

Let us consider an example optimisation run on our LAS
goal model. To make the example slightly more complicated
we will add a fifth decision point to those shown in Figure 1,
namely the possibility to increase the number of ambulances
from a current value of 100 to a maximum of 200. In our
model, this decision variable impacts on the quality variable
DistanceAllocatedAmbulance in Figure 2; the distance between
an incident and the nearest ambulance will decrease when
there‟s more ambulance to choose from. To limit the size of
the search space, we only consider increments in ambulance
number by 20 units, which creates six options for this
decision point. Adding this decision point gives us a global
design space for the LAS system of 4×3×3×3×6 = 648
alternative systems. Relatively short searches can be

Figure 5. Genetic crossover for design choices

performed using the genetic algorithm (e.g. a search with 50
generations for a population of 20 runs in 3.5 minutes) but
they return solutions that are still far from the Pareto-
optimal. Increasing the population size and number of
generations improves the quality of the solutions but it did
not produce better solutions than exhaustive search when
allowed to run for the same amount time. For example,
Figure 6 plots the cost and 14 minute response rate of the
solutions explored through an exhaustive search (depicted as
squares) and of the solutions returns by the genetic algorithm
running (depicted as circles) when allowed to run for the
same amount of time. A genetic algorithm approach would
still be useful however when working over much larger
models where an exhaustive search is not feasible.

The mixed result we obtained in our use of the genetic
algorithm suggests it would be worthwhile to try developing
optimisation algorithms that are specific to decision
problems represented in goal models. These may exploit the
structure of the goal refinement graph to achieve better
performance and coverage of the optimal design solutions.
The goal-based recursive structure of the simulation process
defined in the previous section may help achieving this.

The presentation of solutions in Figure 6 allows decision
makers to explore tradeoffs between conflicting objectives.
For example, one of these design choices in Figure 6 is [1.1,

2.2, 3.1, 4.1, 5.1], representing the first option for all decision
points except the second where the second option is selected.
This design choice is very cheap since most options are for
the existing system and the use mobile data terminals for
satisfying the goal Achieve [Allocated Ambulance Mobilised] gives

a performance increase for relatively little cost: 98% for
14MinResponseRate and 500k Cost. Another of these design
choices, near the opposite extreme, is [1.1, 2.3, 3.2, 4.3, 5.3],
representing a more expensive solution: over 99% for
14MinResponseRate and 3418k Cost. System designers may
then explore the relatively small set of optimal solutions. For
example, though both solutions above are “optimal”,
stakeholders may of course decide that the slight
performance increase of the latter solution is not worth the
extra investment. Visualising the output as a plot can help
with the identification of sweet spots where e.g. a near-
optimal response rate can be achieved for relatively little
cost.

All decision variables in the LAS model are finite and
discrete. Other problems may involve a mix of continuous
and discrete decision variables –making an exhaustive search
of the design space impossible. For example, our quantitative
goal model for a plastic card fraud detection system contains
a continuous decision variable corresponding to a threshold
value at which alerts should be generated for transactions
that are suspected to be fraudulent. A higher threshold means
fewer alerts are generated thereby reducing the risk of false
alerts but increasing the risk of undetected fraud. Other
decision variables are discrete, corresponding to alternative
responsibility assignment of goals to agents. Further work is
required to develop and explore the use of multi-objective
optimisation algorithm for goal models involving such mix
of continuous and discrete variables.

Figure 6. Visualisation of multi-objective search results

V. RELATED WORK

There exist many requirements engineering techniques to
guide the selection among alternative system designs.
Qualitative techniques such as the NFR framework [13] and
Win-Win model [14] allow one to reason about the positive
or negative influences of alternative design options on goals,
but the qualitative information contained in these models is
generally insufficient to make informed decisions. Numerous
quantitative techniques have been proposed with the aim of
providing more detailed information on which to base
requirements decisions. These include NASA‟s DDP
framework [15], the house of quality matrix in the QFD
method [16], and quantitative extensions to goal models in
the NFR, KAOS, and GRL frameworks [17][18][19].
However, more detailed does not necessarily mean more
accurate. A major problem with the above techniques is that
there is no way to check the accuracy of the quantitative
models against the real-world system they represent because
the quantities they manipulate have no physical
interpretation in the application domain [3]. For example,
specifying that the impact of a computer-based call taking
system on the LAS performance goal is 7 whereas the impact
of an automated call location system is 5 tells us that
stakeholders believe the first option is slightly better than the
second but, because these numbers have no meaning in the
application domain, there is no way of checking the validity
of that belief. This contrasts with the quantitative approaches
where level of goals satisfaction have a concrete physical
interpretation such as VOLERE fit criteria [5], Planguage
quantified requirements [6] and performance indicators used
in organization management and recently introduced in the
User Requirements Notation [20][21]. Our quantitative goal
modelling framework provides formal foundation for
reasoning about measurable levels of goal [3]. This paper
extends this framework with automated techniques for
simulating and optimizing the design decisions in such
models. These techniques allow one to simulate large
numbers of alternative systems designs more efficiently and
systematically than the initial ad-hoc process of [3] that
relied on transforming refinement equations into integrals on
quality variables probability density functions.

The multi-objective search-based optimization technique
proposed in this paper can be seen as an alternative and
extension to the backward propagation algorithms on
qualitative and quantitative goal models [22][19]. These
algorithms allow one to explore whether there exist sets of
design alternatives in a goal model that satisfy top-level
goals to acceptable levels but not to search for optimal
design alternatives among them.

Probabilistic models such as queuing models, Markov
models, reliability block diagrams, fault trees, and event
trees provide standard techniques to evaluate performance,
reliability, and availability goals [23]. Our quantitative goal
modelling framework [3] differs from probabilistic transition
systems in several ways: it is goal-based and declarative
instead of being operational, it allows for compositional
reasoning with respect to the goal structure, and it allows for
a variety of probability distribution function to be used

whereas exponential distributions only are used in
probabilistic transition systems. These differences imply
entirely different simulation techniques than the ones used
for probabilistic transition systems [8].

 Bayesian Belief Networks (BBNs) provide alternative
models for evaluating and making decisions among
alternative system designs [24]. They are however limited to
discrete random variables whose probabilities are related
through the specification of probability tables. Extensions to
standard BBN models allow one to automatically transform
continuous random variables into discrete BBN nodes [25].
We had initially envisaged using such technique to map
quantitative goal models to BBN thereby allowing standard
BBN tools to be used for analysing quantitative goal models.
Our simulation technique is an alternative approach that
avoids such transformations altogether.

Stochastic simulation methods are common in many
areas of engineering and management. In this paper, we
show how probabilistic simulation models for complex
socio-technical systems can be constructed systematically
from quantitative goal-oriented requirements models.
Combining simulation models with optimization techniques
is also a common engineering approach, although to our
knowledge it has never been used to guide the choices of
design decision in goal models. Multi-objective optimization
techniques are receiving increasing attention in requirements
engineering. They are notably used to guide the selection of
requirements based on cost, value and fairness [26][27], and
to guide the selection of optimal sets of actions to mitigate
risks obstructing project goals [15][28]. Our work differs
from these in that it uses richer models (given by refinement
equations following the structure of the goal-refinement
graph) to relate alternative design options to objective
functions that are measurable in the application domain.

VI. CONCLUSION

Simulation and multi-objective optimization techniques
have an important role to play in requirements engineering.
This paper showed how they can support decision making
among large numbers of design alternatives in goal-oriented
requirements models. In particular, we have showed how
stochastic simulation models of design alternatives can be
derived from quantitative goal models, how such simulations
can be used to estimate levels of goals satisfaction specified
in terms of measurable objective functions, and how they can
be used by multi-objective optimisation algorithm to search
for optimal designs. A key feature of these models, as
opposed to other quantitative goal models, is that objective
functions and model variables have physical interpretation in
the application domain. This allows the models to be tested
against actual system behaviours.

Much further work lies ahead. A first set of questions
concerns the model elaboration. Systematic techniques need
to be developed to help the construction of such models,
their validation against the current system, and their
refinement based on the finding of such validation.
Techniques for specifying adequate objective functions for
„soft‟ criteria and for adequately eliciting quality variables
probability distributions will be particularly important. It will

also be important to understand what levels of detail and
accuracy are required of quantitative goal models to be
useful to guide decision making, and when their elaboration
cost justifies their use against simpler qualitative or
quantitative techniques. Details concerning the inclusion of
obstacle resolution alternatives in the quantitative model also
still need to be resolved. A second set of questions concerns
computational challenges. This involves improving the
performance of simulation and optimisation algorithms,
extending the analysis capabilities with sensitivity analysis,
robustness analysis, and allowing optimisation with respect
to a mix of continuous and discrete decision variables. A
third set of questions concerns the usage of these techniques
by decision makers, notably how to support the analysis of
simulation runs and Pareto-optimal set of solutions to gain
useful insights about the decision problem and how to use
such model to support the human and political aspects of
decision making.

ACKNOWLEDGEMENT.

The work reported herein was supported by the EPSRC grant
EP/H011447/1.

REFERENCES

[1] A. Finkelstein and J. Dowell, “A comedy of errors: the

London Ambulance Service case study,” in Proc. IWSSD 8,

1996, pp. 2-4.

[2] A. van Lamsweerde and E. Letier, “Handling Obstacles in

Goal-Oriented Requirements Engineering,” IEEE

Transactions on Software Engineering, vol. 26, no. 10, pp.

978–1005, Oct. 2000.

[3] E. Letier and A. van Lamsweerde, “Reasoning about partial

goal satisfaction for requirements and design engineering,”

in Proc. FSE'04, 2004, pp. 53-62.

[4] A. van Lamsweerde, Requirements Engineering: From

System Goals to UML Models to Software Specifications.

John Wiley & Sons, 2009.

[5] S. Robertson and J. C. Robertson, Mastering the

Requirements Process, 2nd ed. Addison Wesley, 2006.

[6] T. Gilb, Competitive engineering: a handbook for systems

engineering, requirements engineering, and software

engineering using Planguage. Butterworth-Heinemann,

2005.

[7] A. van Lamsweerde, R. Darimont, and E. Letier, “Managing

conflicts in goal-driven requirements engineering,” IEEE

Transactions on Software Engineering, vol. 24, no. 11, pp.

908-926, Nov. 1998.

[8] M. Kwiatkowska, G. Norman, and D. Parker, “PRISM:

Probabilistic Symbolic Model Checker,” in Computer

Performance Evaluation: Modelling Techniques and Tools,

LNCS vol. 2324, Springer, 2002, pp. 200-204.

[9] L. Duboc, E. Letier, D. S. Rosenblum, and T. Wicks, “A

Case Study in Eliciting Scalability Requirements,” in Proc.

RE ’08, 2008, pp. 247-252.

[10] A. L. de Cerqueira Leite Duboc, “A framework for the

characterization and analysis of software systems

scalability,” PhD thesis, March 2010.

[11] M. Harman, “The Current State and Future of Search Based

Software Engineering,” in Future of Software Engineering,

Los Alamitos, CA, USA, 2007, pp. 342-357.

[12] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast

and elitist multiobjective genetic algorithm: NSGA-II,”

IEEE Transactions on Evolutionary Computation, vol. 6, no.

2, pp. 182-197, Apr. 2002.

[13] J. Mylopoulos, L. Chung, and B. Nixon, “Representing and

Using Nonfunctional Requirements: A Process-Oriented

Approach,” IEEE Transactions on Software Engineering,

vol. 18, no. 6, pp. 483-497, 1992.

[14] B. Boehm, P. Bose, E. Horowitz, and Ming-June Lee,

“Software requirements as negotiated win conditions,” in

Proc. RE'94, 1994, pp. 74-83.

[15] M. S. Feather and S. L. Cornford, “Quantitative risk-based

requirements reasoning,” Requirements Engineering, vol. 8,

no. 4, pp. 248-265, Nov. 2003.

[16] Y. Akao, Quality Function Deployment: Integrating

Customer Requirements Into Product Design. Productivity

Press, 2004.

[17] P. Giorgini, J. Mylopoulos, E. Nicchiarelli, and R.

Sebastiani, “Reasoning with Goal Models,” in Conceptual

Modeling — ER 2002, LNCS vol. 2503, 2003, pp. 167-181.

[18] A. Lamsweerde, “Reasoning About Alternative

Requirements Options,” in Conceptual Modeling:

Foundations and Applications, LNCS vol. 5600, 2009, pp.

380-397.

[19] D. Amyot, S. Ghanavati, J. Horkoff, G. Mussbacher, L.

Peyton, and E. Yu, “Evaluating goal models within the

goal‐oriented requirement language,” International Journal

of Intelligent Systems, vol. 25, no. 8, pp. 841-877, Aug.

2010.

[20] A. Pourshahid et al., “Business process management

with the user requirements notation,” Electronic Commerce

Research, vol. 9, no. 4, pp. 269-316, Aug. 2009.

[21] V. Popova and A. Sharpanskykh, “Formal modelling of

organisational goals based on performance indicators,” Data

& Knowledge Engineering, vol. 70, no. 4, pp. 335-364, Apr.

2011.

[22] J. Horkoff and E. Yu, “Finding Solutions in Goal Models:

An Interactive Backward Reasoning Approach,” in

Conceptual Modeling – ER 2010, LNCS 6412, Springer,

2010, pp. 59-75.

[23] K. S. Trivedi, Probability and statistics with reliability,

queuing and computer science applications, 2nd ed. John

Wiley and Sons Ltd., 2002.

[24] N. Fenton and M. Neil, “Making decisions: using Bayesian

nets and MCDA,” Knowledge-Based Systems, vol. 14, no. 7,

pp. 307-325, Nov. 2001.

[25] M. Neil, M. Tailor, D. Marquez, N. Fenton, and P. Hearty,

“Modelling dependable systems using hybrid Bayesian

networks,” Reliability Engineering & System Safety, vol. 93,

no. 7, pp. 933-939, Jul. 2008.

[26] A. Finkelstein, M. Harman, S. A. Mansouri, J. Ren, and Y.

Zhang, “A search based approach to fairness analysis in

requirement assignments to aid negotiation, mediation and

decision making,” Requirements Engineering, vol. 14, no. 4,

pp. 231-245, Feb. 2009.

[27] Y. Zhang, M. Harman, and S. A. Mansouri, “The multi-

objective next release problem,” in Proc. GECCO'07,

London, England, 2007, pp. 1129–1137.

[28] M. S. Feather and T. Menzies, “Converging on the optimal

attainment of requirements,” in Proc. RE'02, 2002, pp. 263-

270.

	I. Introduction
	II. BACKGROUND
	A. Goal-Oriented RE with KAOS
	B. Quantitative Goal Models

	III. Evaluating Alternatives With Stochastic Simulation
	A. Simulating Goal Models
	B. An Example Simulation
	C. Setting the simulation size to a confidence interval

	IV. Searching for Optimal Tradeoffs in Multi-Objective Designs
	A. Multi-Objective Optimisation Problems
	B. Multi-Objective Optimization Algorithms
	C. Encoding the Optimisation Problem for Design Choices
	D. Exploring Alternatives for the LAS Case Study

	V. Related Work
	VI. Conclusion
	Acknowledgement.

	References

